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Abstract—In big data era, the heterogeneous 

accelerators using Field Programmable Gate Arrays, 
(FPGAs) has renewed many research interests to 
improve the speedup and efficiency. However, the gap 
between high level programming and hardware 
implementation is bringing significant challenges to the 
software programmers, especially for those without 
sufficient hardware skills.  

With the help of the High Level Synthesis (HLS) tools, 
it is now feasible to generate hardware (register transfer 
level, RTL) codes from high level software. In 
particular, HLS tools for FPGAs have made 
considerable progress over the past few years, and are 
now sufficiently sophisticated that a developer could 
create functionally correct implementation with limited 
understanding of the target hardware. In this case study, 
we propose a practical evaluation to measure the 
efficiency of the cutting-edge industrial Vivado tool 
provided by Xilinx. The RTL efficiency, middleware 
overheads and running time of the RTL generation are 
measured respectively.  

Experimental results reflect some limitations of state-
of-the-art industry tools: 1) the efficiency of the 
generated code is unsatisfying for non-intuitive 
applications; 2) When an operating system is 
incorporated, the scheduling overheads is significant 
enough (>100us) to hide the speedup for some intuitive 
benchmark applications; 3) The running time to 
generate RTL code may take hours or even days. 

 

Index Terms—Big Data, High Level Synthesis, FPGA 

I. INTRODUCTION  

With the wide application of social computing, mobile 
computing and networking, it has been a common 
knowledge that social and enterprise big data has pervaded 
into our daily lives. Vast volume of data generated at an 
explosion-like speed and the fast growth rate of the global 
data are unprecedented [1]. It makes our life more 
convenient while at the same time also poses significant 
challenges to computer researchers and scientists. Large 
data processing and analysis capabilities are far less than the 
ideal level, which means it needs the capacity of high-speed 
information transmission, real time processing and data 

analysis. Furthermore, low value density feature makes data 
mining more challenging. The data collection and the 
procession of data mining are quite timing consuming, it 
will dramatically drag down the performance using 
conventional computing systems. As a consequence, how to 
efficiently accelerate the big data application by using 
heterogeneous accelerators like GPU, FPGA or ASIC is 
becoming increasingly important, especially in machine 
learning [2] and neural networks [3]. 

However, one of the major problems we have to face is 
that the gap between high-level programmer and the 
hardware architectures. During the last few years, High 
Level Synthesis (HLS) has made great progressive 
achievements forward. By abstracting onto commonly used 
programming languages such as C, C++ and Haskell, the 
pool of potential hardware developers has grown by several 
orders of magnitude. It is essential and necessary to 
construct an efficient operating system or middleware 
support to bridging the gap by enabling various coarse 
grained heterogeneous accelerators [4].  

In this paper, we describe our investigation as to whether 
several leading HLS tools are ready for adoption in an ideal 
industrial utilization. We have found that while these tools 
generally are ready, there are still negative (imperfect) 
results, when they actually are playing a significant role in 
determining the implementation for application specific 
domains.  

In order to evaluate the industrial HLS and middleware 
support for FPGA based platforms, one of the major 
contributions of this work is to propose an FPGA based 
design flow and framework with profiling and data analysis 
for big data applications. The framework is able to facilitate 
researchers to construct a fast prototyping evaluation 
platform, which integrates the hardware accelerators, 
peripherals, tool chains, and an operating system support. 
The platform is targeted at heterogeneous architectures with 
the following characteristics: 

1) Automatic parallelization: Most data-intensive 
computational tasks are expressed as a running threads to be 
processed in parallel. Data chosen for the parallel tasks 
depends on data previously processed and arrived, and the 
execution starts upon getting the required input data. In 
these problems, the inter-task dependencies should be 
analyzed to make tasks run out-of-order. 



2) Dataflow execution: Instead of streaming and 
processing the entire dataset, the computation is composed 
of multiple dataflow execution phases, each of which 
continuously examines subsets of data in parallel. The 
messages exchanged between different phases are regarded 
as tokens. Whenever the required tokens are ready, the task 
could be fired, therefore the entire tasks could be executed 
out-of-order. 

3) Component based programming model: The 
heterogeneous accelerators are abstracted as components, 
which could facilitate researchers to incorporate 
heterogeneous functional modules, as well as to ease the 
burden of the programmers. 

4) Based on the hardware platform, we evaluated 
following features of the state-of-the-art HLS tools: the gap 
between the efficiency of the RTL generated code and 
optimized RTL code; the scheduling overheads when 
porting a Linux operating system to handle the threads; and 
finally the running time of RTL generation using Xilinx 
HLS software tools. 

The remainder of this paper is organized as below. In 
Section II we summary the related work. Thereafter Section 
III details the proposed acceleration architecture, which 
includes the architecture framework, the programming 
model, and the thread management in the operating system 
middleware support. Then in Section IV we show the 
hardware prototype using Xilinx Zynq FPGA using several 
test case studies. Experimental results illustrate the 
imperfect efficiency from the state-of-the-art HLS tools and 
the considerable scheduling overheads middleware support. 
Finally, the paper is concluded in Section V. 

II. RELATED WORK 

A. Architecture Design in Big Data Applications 

With the increasing demand of state-of-the-art 
applications in big data era, the instruction-level parallelism 
on uniprocessor based architectures would definitely run 
out-of-performance in the foreseeable future, therefore more 
researchers are seeking parallelism is shifting from 
instruction level to task and data level. 

Of the coarse-grained parallel architectures, it can be 

acknowledged that the high-performance, low-power FPGA 
based computing mode has renewed many research interests 
during the past few years. For example, Microsoft [20] has 
successfully adopted FPGA into the datacentre acceleration, 
which is able to achieve significant speedup for BING 
search engines. Furthermore, some researchers have also 
proposed scalable FPGA cluster platforms, such as CUBE 
[5], Axel [6], FPMR [7], ZCluster [8], SODA [21], and 
SNNAP[3]. 

B. Operating Systems Framework 

Operating system plays a key role in data management 
and middleware support. So far there are quite some 
creditable literatures on parallel multicore architectures, 
such as Corey [9], fos [10] and Barrelfish [11]. To support 
heterogeneous reconfigurable accelerators, Hthread [12] 
presents a multi-threading model for FPGA based 
reconfigurable systems, which could leverage the 
heterogeneity between computing resources. Berkeley's 
BORPH [13] stores the reconfigurable logic configuration 
information in the executable file, and utilizes FIFO buffer 
to achieve inter-thread communication. Also, ReconOS [14] 
is POSIX standard multi-threading operating system on a 
reconfigurable platform. 

C. Programming Model and Runtime 

The parallel programming model based on FPGA and 
GPU based heterogeneous accelerators have been deeply 
conducted for decades. There are already a good number of 
creditable heterogeneous parallel programming models such 
as OpenCL [18], and OpenACC [15], as well as domain-
specific languages like OptiML [17] and Delite [16]. These 
frameworks intend to provide a unified programming 
interface for heterogeneous multi-accelerator platform, but 
programmers still need to understand detailed knowledge 
about the underlying accelerators, and thereby increase the 
challenges to programming and compiler design complexity.  

Although plenty of researches have been devoted to task 
scheduling to manipulate heterogeneous accelerators, there 
have been no well-established support conducted for FPGA 
based accelerators for future data-intensive applications. In 
this paper we make a brief summary of the stage-of-the-arts 

TABLE I.  SUMMARY FOR STATE-OF-THE-ART ON RELATED RESEARCH FIELDS  

Research Categories Typical Strengths Weaknesses 

System Architecture 
Heterogeneous 

FPGA+Accelerators 

SNNAP[3], CUBE [5], 

ZCluster [8], Microsoft [20] 

Low power and 

High efficiency 
Low Productivity 

Operating System  

Symmetric Architectures/  

Heterogeneous based on  

FPGA+Accelerators 

Corey [9], fos [10], barrelfish 

[11], Hthread [12],  BORPH 

[13],  ReconOS [14] 

Manage symmetric 

resources 

efficiently 

Do not utilize 

accelerators  

efficiently 

Programming 

Model/Runtime 

Support 

Heterogeneous 

Architectures ( CPU+GPU) 

OpenACC [15], OptiML 

[17], Delite[16] 

Achieve data 

level parallelism 

Need annotations 

or new language 

Heterogeneous 

(FPGA+Accelerators) 

OpenCL [18], 

TaskSuperscalar[19],  

Could manage  

accelerators 

Programming 

Wall 

 



in Table 1. Furthermore, we put concentrations on the 
FPGA based accelerator architecture, manage the parallel 
threads running on heterogeneous accelerators, and analyze 
the dataflow in big data applications. 

III. ACCELERATION ARCHITECTURE 

A. Architectural Framework 

The proposed hardware architecture is constructed in a 
hardware platform that can provide heterogeneous 
reconfigurable multicore resources such as FPGA. It 
consists of an application layer and a middleware layer. For 
hardware implementation several embedded processors are 
designed as software computing nodes, while various types 
of hardware intellectual property (IP) cores as hardware 
nodes, interconnect modules, processor local bus, memory, 
and peripheral modules. The application layer provides the 
basic run-time environment and application programming 
interfaces (API) to tasks. The middleware layer is in charge 
of system virtualization, task partitioning, mapping, 
distributing and scheduling. 

The thread management in the middleware support is 
depicted in Fig. 1, which provides the heterogeneous 
computing resources (CPU and FPGA) for the execution 
flows. The threads can execute on either CPU or FPGA. 
Above the hardware infrastructure is the thread binding 
layer, where several effective binding algorithms are applied. 
Threads are created by linking the hardware/software 
libraries to the thread creation layer. The top layer is 
operating system library and user interface, which provide 
the multi-threads programming environment and integrate 
the designed hardware/software libraries. 

 

User Interface

HW Lib ... SW Lib

CPU FPGA

Operating System

Thread Creation

Thread Binding

Thread Execution

 
Fig. 1. Hierarchical Framework of Multi-Execution Flow 

The hardware and software libraries are designed as 
dynamic linked libraries and integrated in the operating 
system. With linking to these libraries, traditional multi-
thread program can run on either FPGA or CPU. Both 
software and hardware libraries contain a functions’ entries 
table, which are ready to be invoked by user program. The 
difference between hardware and software libraries is that 
the hardware libraries integrate necessary ports and drivers 

to communicate with FPGA as well as the bit files to 
program the FPGA. The detail comparison between 
software library and hardware library is made in Table II. 
Furthermore, Fig. 2 illustrates the design and evaluation 
flow with the high level synthesis, which gives a 
comprehensive general processing flow for accelerator 
design in data-intensive applications. 

TABLE II.  COMPONENTS IN HW/SW LIBRARIES 

Items Hardware Library 
Software 
Library 

Function Entries 
Table 

Packaged hardware IP 
cores 

Packaged 
functions 

Drivers 
Drivers for accelerators 

on FPGA 
Not necessary 

Synchronization 
Operations 

In the pthread_join 
function 

In the 
pthread_join 

function 

Bit Files 
Bit files for 

programming FPGA 
Not necessary 

Scripts Files 
Script files for 

automatically reset and 
program FPGA 

Not necessary 

 
In order to be compatible with traditional multi-threads 

programs, the thread creation follows the POSIX thread 
standard. Programmers can use the any standard POSIX 
APIs, such as creating a thread, synchronizing operations, 
and terminating a thread. Basically, the hardware platform is 
transparent for programmers. A thread will be automatically 
issued to appropriate logic resources for execution.  

We also provide an optional choice for users who need 
to manually map the thread to specified logic resource. 
There is a flag when creating the thread. The default value 
of the flag is NULL to indicate the framework will 
automatically map the thread to appropriate logic resources. 
If the programmers want their program run on the CPU, 
they could modify the flag to point to the corresponding 
entry in software library, and vice versa. 

B. Out-of-order Scheduling with  Inter-task Dependences 

In the architecture, the system speedup is generally 
brought by the hardware accelerators. In order to enlarge the 
task level parallelism, we employ an out-of-order 
scheduling scheme with detection of inter-task dependences. 

Inter-task data dependency is a key factor limiting the 
data-level parallelism. In this paper, we use sub-graphs as 
the fundamental unit during the data flow analysis step. 
Generally there are three types of data dependencies 
(including Write-after-Write, Read-after-Write and Write-
after-Read). In order to make the analysis method general 
and not dependent on very specific application, we use 
Colored Petri Nets (CPN) for dependencies modeling and 
formal verification. In particular we abstract tasks running 
on heterogeneous reconfigurable system as instructions on 
uniprocessor as follows: 



1) Abstract the task as instruction. The task type is 
abstracted as opcode instruction, while the input and output 
are abstracted as instruction operands. 

2) Abstract the accelerator as functional unit. Each 
accelerator in the heterogeneous reconfigurable computing 
system is abstracted as a functional unit in Arithmetic Logic 
Unit (ALU), and in CPN model we use Place element to 
represent heterogeneous computing resources. 

 

 
Fig. 3. Inter-task structural and data dependencies representations, P1~3 
represents Place, and T1~6 represents Transition. 

Fig. 3 illustrates the basic principle of the structural and 
data dependencies using CPN formal model. In Fig.3.a, 
there are three tokens in the Place P1, which indicates the 
idle accelerators. The different colors means of these 
accelerators are heterogeneous. Transition T1 and T2 
represent two computational tasks to run on the accelerators 
(denoted as Tokens in the Place P1). If T1 and T2 need the 
same only token in P1, then the trigger of either transition 
will consume the only token, leaving the other transition 
blocked immediately. In this manner, the structure 
dependency and Write-after-Write data dependencies could 
be formally described. Similarly, Fig.3.b and Fig.3.c depict 
the Read-after-Write and Write-after-Read data 
dependencies respectively. Please note the arc ended with a 
cycle Fig.3.c is the inhibitor arc, which means T6 could be 
triggered only when Place P3 is empty, which is 

corresponding to the Write-after-Read dependency. On the 
basis of these dependencies, we can get the partitioned tasks 
that could run in parallel to achieve data-level parallelism. 

An out-of-order scheduling scheme is employed based 
on the inter-task data dependence, which is in charge of 
scheduling tasks to exploit the potential parallelism. Before 
the task can be issued, it will first detect the inter-task 
dependencies. If the current task does not depend on 
previous issued tasks, it can be issued immediately, 
otherwise it has to wait all the required input tokens to be 
ready. When the previous task finishes its execution, it will 
release the token and thereby the current task can be 
executed. This mechanism enables out-of-order for parallel 
threads running on hardware accelerators. 

 
Fig. 4. Architecture Framework of the Prototyping System 

IV. EXPERIMENTAL PLATFORM AND RESULTS 

In order to evaluate the prototype, we have built the 
general framework on the Xilinx state-of-the-art FPGA 
Zedboard platform, which integrates an ARM Cortex-A9 
dual core processor with 667MHz frequency and a Zynq-
7000 series FPGA fabric. The proposed hardware 

 
Fig. 2. Design & Evaluation Flow for High Level Synthesis  



architecture is presented in Fig. 4. The prototype consists of 
following layers: the application layer, the library function 
layer, the driver function layer, and the accelerator layer. 
The accelerator layer is composed of diverse hardware 
intellectual property (IP) cores as hardware acceleration 
engines, interconnect modules, local buses, memory blocks, 
and peripheral modules. 

Figure 4 also illustrates the programming model on the 
experimental platform. In order to support hardware threads 
running on accelerators, we have implemented a kernel 
library to manipulate the process. The specific function will 
be abstracted as a thread, which will be offloaded to the 
accelerator for hardware execution. Based on the 
prototyping system, we evaluated the overhead of the 
middleware, efficiency of the generated code (with/without 
optimization), and the running time of the RTL generation 
respectively. 

A. Overheads of the Middleware 

With the help of the high level programming model and 
the middleware support, programmers can utilize the 
accelerators efficiently. However, overheads should be 
taken into consideration while offloading partial tasks into 
accelerators. We have evaluated the overheads of the 
framework, comparing with benchmark applications 
including Constrained Shortest Path Finding (CSPF) 
algorithm and DES applications. Experimental results in 
Fig.5 illustrate that the overheads of the platform on X86 

(for comparison) and Zynq platform are 165us and 220us, 
respectively. It reveals that due to the overheads, it may not 
bring speedup for applications with low computational 
complexity, e.g. DES application less than 255 rounds, or 
CSPF application less than 32 rounds.  In this situation, we 
can use the raw bare metal accelerators without any OS 
middleware. Meanwhile, when the applications become 
more complex, the overheads also become insignificant 
compared to the execution time on accelerators.  

B. Efficiency of the RTL generated code 

Fig.6 illustrates the comparison between “ideal” 
hardware execution time and generated time, counted by 
clock cycles. The “ideal” IP cores are achieved from 
OpenCores and supposed to be optimized. All the hardware 
IP cores runs at 100MHZ. It reveals that the execution time 
of the register transfer level (RTL) code generated from 
Vivado HLS is not even close to the execution time from the 
ideal IP cores, such as the FIR, DES and CSPF benchmarks. 
In comparison, the Matrix multiply application can achieve 
ideal speedup as it consists of regular calculation, on the 
condition of the loop unrolling and reshapge optimizations. 

Furthermore, some results on quantitative efficiency 
derived from the comparison with optimization in Fig.6 is 
presented in Fig. 7. It reports that the optimization measures 
such as pipeline, unroll, reshape and memory reallocations 
can improve the efficiency of the generated hardware 
sources code, but not satisfying enough. For example, the 
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Fig. 5. Comparison of Framework overheads against typical benchmark applications. 

 
Fig. 6. Comparison between ideal hardware execution time and generated time 



pipeline optimization technique has promoted the efficiency  
of FIR accelerators from 18% to 49% only, while the 
memory reallocations methods increase the efficiency of 
DES application from 38% to 57% approximately. 
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Fig. 7. Efficiency derived from typical benchmark applications 

C. Running Time of the RTL Generation 

Another perspective is the running time of the RTL 
generation process, which is illustrated in Fig. 8. We use 
CSPF as the case study, x-axis indicates the node number, 
and y-axis refers to the running time of the RTL generation 
(in Minutes). When the network contains nodes less than 32, 
the Vivado HLS tool is fast enough to generate the hardware 
code (several minutes). However, when the network has 
more than 128 nodes, it takes more than 4 hours to generate 
the RTL code, which means once the C code is modified, 
another long-time iteration will be taken into process. 

 
Fig. 8. Running time of RTL generation. The x-axis indicates the node 

number, and y-axis refers to the running time (denoted in Minutes). 

V. CONCLUSIONS  

To bridge the gap between high level software 
programmers and the hardware architecture, in this paper we 
have presented a hierarchical framework with HLS tools. 
Experimental results on Xilinx platform demonstrates the 
efficiency, optimization technique, and the running time of 
the RTL generation. Experimental results demonstrated the 
efficiency of the generated code is only 30%~50% for some 
typical applications. Also, the scheduling overheads of the 
OS middleware is significant enough to hide the speedup for 
some intuitive benchmark applications. Finally the running 

time of the software tools to generate RTL code shows that 
the optimization of the software tools is still worth pursing 
to facilitate software programmers. 
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