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Abstract—Increased last level cache capacity, poor scaling of
the least recently used cache management policy, and proliferat-
ing approximations of reuse distance sparked a lot of research in
replacement policies. Many modern policies exploit data patterns
and properties of the cache such that the capacity can be used
more effectively. We propose Cache Watermarking to manage
last level cache in light of ping-pong behavior exhibited by
program access patterns. Ping-pong behavior sees blocks being
evicted shortly before reuse, incurring an off-chip access. Our
technique evicts, promotes, and inserts cache blocks based on
observed reuse in context of an LRU-based reuse stack with the
intent of prioritizing removal of short-lived or dead blocks. We
detail efforts to apply watermarking to each cache block, as well
as adding sampling techniques like set dueling and sampling.
We further evaluate how the technique performs in context of
a prefetcher and different cache inclusion principles. In each
scenario, we discuss how watermarking contributes or conflicts
with the current context of analysis.

I. INTRODUCTION

The Least Recently Used (LRU) policy demonstrates di-
minishing performance and intractability of overhead state as
caches grow larger. Qureshi et. al. [1] suggests that streaming
and thrashing access patterns negatively impact cache efficacy.
They propose Dynamic Insertion Policy (DIP) which uses set-
dueling as a method of implementing two insertion policies
within a level of cache. A global counter is updated pending
access behavior of certain leader sets. The global counter is
consulted by non-leader sets in order to decide which policy
is the best choice. DIP is built on top of LRU. Khan et. al. [2]
suggests cache efficacy is compromised by blocks that never
hit in cache, or are dead. They propose correlating sampled
cache miss behavior to program counter values as a means
of predicting blocks that do not hit, or die, in the cache.
Jaleel et. al. [3] suggest intraset cache reuse can be generalized
along a proposed re-reference chain rather than a reuse stack
(as in LRU). They use a proxy for this re-reference chain to
implement Re-Reference Interval Policy (RRIP) and build set-
dueling-based [3] and sampling-based [4] techniques on top of
this base policy.

We approach improving cache efficacy by minimizing dead
lines at a finer granularity. We propose cache block water-
marking as a method of minimizing the dead time of blocks
with short reuse. We do this by evicting blocks which have
exceeded the last position at which it was hit, or watermarked,
prioritizing blocks with longer dead time. In so doing, the
technique minimizes ping-pong behavior which causes cache
blocks to repeat a pattern of eviction and insertion without

any reuse. In this paper, we discuss ping-ponging behavior in
brief detail, how a watermarking works, how the design of
watermarking evolved, and the shortcomings built into such a
technique in context of modern cache design.

II. EXPLOITING CACHE ACCESS BEHAVIOR

Cache performance depends on the access patterns exhibited
by the workload. A cache which prioritizes near re-use will
be sub-optimal for workloads with little locality. We define
a specific type of behavior caused by sub-optimal cache
eviction policies: cache ping-pong, where cache blocks are
evicted and re-inserted within a defined window of insertions.
This behavior is exacerbated by dead-line insertion, where
space in the cache is occupied by blocks that will not be
re-referenced prior to eviction. This is a problem in LRU-
like schemes which favour frequently re-used blocks as the
dead-line must traverse the entire LRU stack before being
an eviction candidate. A replacement policy which prioritizes
eviction of dead-on-insertion blocks will make room for
ping-ponging cache blocks. In last-level caches, non-LRU-like
policies can take advantage of these dead-blocks and prioritize
them for eviction. We propose cache block watermarking,
a novel scheme which adapts the LRU stack depth to the
access patterns experienced by the cache block. This is done
by recording the reuse value of a block on a hit and using
this value as a threshold beyond which said block becomes
a candidate for eviction. Further, we compose this into a
light-weight prediction mechanism to identify dead-blocks at
insertion, as well as predict watermarks.

A. Ping Pong Access Patterns

In the context of this work, we define re-use distance of a
block in a set as the number of unique accesses to that set in
between two consecutive accesses to the same block [5]. This
is in contrast to other definitions of re-use distance that count
all intervening accesses to that set, including multiple accesses
to the same blocks [6], [7]. The advantage of our definition of
re-use distance is that it can be easily measured at run-time
by examining the “LRU stack”. Every set in an LRU cache
can be logically represented as a stack of ’ways’, ordering
each ‘way’ in the set from most-recently-used (MRU) block to
LRU. The MRU position is on the “top” of the stack. This can
be extended to pseudo-LRU, which approximates the LRU-
stack with a tree. However additional state may be needed to
encode the depth.
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Fig. 1. Cache Watermark Example: (Top) Typical lifetime of a cache-line with LRU replacement showing depth in LRU stack for 8-way set; line is evicted
after reaching LRU. (Bottom) Lifetime of cache-line with watermark history; line is evictable after the watermark is exceeded, reducing dead-time.

Figure 1 illustrates the lifetime of an example cache block
with LRU replacement. Line A’ is inserted at time #(0) at the
MRU position of the set. Every following hit to *A’ is marked
in a gray bubble. The dashed arrows connecting the gray
bubbles represent the re-use distance between those accesses.
The text below each gray bubble also indicates the position in
the LRU stack where the block is hit. Every time A is hit, it
moves back to the MRU position. Block A is hit 3 times with
a maximum re-use distance of 2. It is finally evicted when it
reaches LRU, after the last access. This results in a deadtime
of 7. For LRU, when a block is last-accessed, it must wait for
accesses to N unique lines, where N = associativity — 1,
before falling to the LRU position in the stack and being
replaced by the next insertion to the cache set. During this
dead-time other live lines would make better use of the cache.

Figure 1 (b) shows how a cache block can be evicted
earlier, if knowledge of its prior access behavior is known.
A replacement policy can exploit the regularity of caches
accesses (e.g. from loops) to make more informed decisions
when evicting a block. If the watermark in the stack is recorded
after a hit, a block can be expected to not exceed that distance
in its lifetime.

B. Cache-Hit Behavior

Figure 2 show how LRU replacement can be inefficient
in the context of last-level caches where temporal locality
has been filtered. This figure shows the distribution of ‘hit’-
positions in the last-level cache’s LRU stack for several
workloads from the SPEC2006 [8] suite. These workloads
were simulated for 1 Billion instructions with a 2-MB, 16-
way L3 cache, recording the position in the LRU stack when
a cache-block was re-used (hit) after insertion.
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Fig. 2. Hit analysis for hmmer, cactusADM, and xalancbmk. Top: Positions
in pseudoLRU stack where cache-block is hit. Bottom: Position of last hit
prior to eviction

The top row shows the position in the LRU stack when
a block is ‘hit’. The bottom row shows the position of the
block for the ‘hit’ immediately preceding the eviction of the
block. The ‘last hit’ position mirrors the overall ‘hit’ pattern
observed by the workload. This indicates that the cache access
pattern is regular on aggregate. Tracking the previous hit
history of a cache-block will encode this hit-behavior into
the cache eviction decision. We exploit the predictability and
repeatability of a watermark in order to make better eviction



TABLE I
ARCHITECTURAL PARAMETERS

I [ Reorder Buffer Entries | Width [ Branch Prediction [ Core Model |
| ChampSim_| 256 | 6 |

Bimodal | Intel Skylake |
Capacity/core Associativity Block Size
L1(D/T) 32KB 8 64B
L2 256KB 8 64B
L3 2048KB 16 64B

TABLE 11
REPLACEMENT AND INSERTION POLICY EVALUATION PARAMETERS
Predictor Policy Sampler Predictor Table Count | Bypass
DBP LRU Sampler Cache 3 Yes
SHiP Static RRIP | Random Sets In Cache 1 No
Perceptron pLRU Sampler Cache 6 Yes

decisions and discover (and predict) which instructions insert
dead-blocks into the cache.

III. METHODOLOGY
A. Simulator

We built all versions of cache block watermarking into
ChampSim [9], which was the simulator used in the recent
Cache Replacement Competition [10]. The version we use
is a full version which was recently released. The simulator
was modeled after the Intel Skylake [11] (see Table I). In
addition to the watermarking policies, we have DBP, SHiP,
and Perceptron to compare against (see Table II). For the
prefetching analysis, please note that a stride prefetcher is
implemented in ChampSim, in line with Intel L2 Streamer
Prefetchers. Further, the cache hierarchy for ChampSim is non-
inclusive so we modified it to implement inclusion (or back
invalidation of data in lower levels of the cache when higher
levels of the cache evict said data).

B. Benchmarks

The benchmarks used to evaluate the replacement policies
are from the SPEC 2006 benchmark suite [8]. Utilizing the
simpoints methodology [12] on 29 SPEC 2006 benchmarks,
we chose a 1 billion instruction slice with the highest weight
from the set of simpoints generated.

IV. EVOLVING CACHE WATERMARK

We present cache watermarking as a proxy for reuse dis-
tance in last level caches. We derive a watermark from the
last hit value of a given block as defined by the base policy
reuse heuristic. For example, in LRU, the reuse heuristic is the
stack position relative to the LRU stack. The deepest hit value
is stored with each block. As a reuse proxy, watermark can be
leveraged to evict lines sooner than LRU allows by comparing
the current value of its reuse heuristic to the corresponding
watermark stored with the block. This acts as a threshold
beyond which that block can be evicted. We designed a base
version of our technique such that a block has a watermark
stored with the corresponding reuse state (LRU in this case),
which is demonstrated in figure 1. From the figure, we see
that block A hits at position 2 on the LRU stack, recording a
watermark in of 2. In figure 1a, we see that if the watermark is
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Fig. 3. Sampler-based Cache Watermarking Hardware Diagram

not considered, block A has a exists in the cache a lot longer
than it potentially should (dead time of 7 insertions before
eviction). Conversely, in figure 1b, we see that this dead time
is a lot shorter (3 insertions) when taking the hit watermark
into consideration.

In designing cache watermark, obvious issues lie in the
overhead state, erroneous watermarking, and unknown, general
behavior. We propose a compressed method of extracting
reuse from an approximation of LRU to address the overhead
issue. We also apply methods like set-dueling and sampling
to regulate erroneous watermarking and predict watermarks.
Lastly, in response to unknown behavior that can occur when
sampling, we depend on general hit behavior.

A. Approximate Watermark: pLRU Tree Distance

Remembering a watermark would double the replacement
state overhead of an already expensive base policy. We address
his in two ways: using pseudo LRU (pLRU) as the base policy;
and approximating reuse distance in context of this pLRU. We
use tree-based pseudo LRU, which stores <1 bit per cache
line in a given set. Further, we borrow methods to extract
pseudo LRU stack positions that are detailed in Jiménez [13].
Considering the cost to keep a full stack position, we need
sought an alternative to reuse that could be extracted from
the pLRU tree itself. To this end, we propose the idea of tree
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Fig. 4. Geometric Mean Speedup of All Watermark Iterations, from left to
right: pseudoLRU Stack Position based WM, Tree-distance based WM, Tree-
distance based WM set dueled with pLRU, and sampler TreeWM and set-wise
behavior counters



distance as a proxy for reuse. The tree distance in this context
refers to the number tree node toggles required to move a line
from the current pseudo stack position to the most recentlyused
(MRU) position on a hit. For example, assume there is a hit
to a block in a 16-way set-associative cache. If a block is hit
when the pseudo stack position method calculates a position
of 7, this requires 3 tree nodes be toggled in order to move the
hit block to MRU. Therefore, we store a tree distance of 3. In
total, for a 16-way set-associative cache, we reduce overhead
to be comparable to RRIP (<3 bits per block vs. 3 bits per
block).

B. Predicting Watermark: Set-dueling and Set-sampling

Using watermarking alone as a replacement policy does
not help performance as well as expected. In fact, it can
increase misses because there are access patterns which work
best with LRU and the related approximations of LRU. We
address this in two ways: set-dueling watermarking with
pLRU to address phases where watermarking fails; and set-
sampling with algorithms to manipulate pLRU trees according
to predicted watermarks. Set-dueling is implemented in the
same fashion as DIP [1] and DRRIP [3], so details of this
implementation are not explained. In context of set-sampling,
this version of watermark can be perceived as an augmented hit
predictor. By using a sampler, we are watermarking sampled
behavior, thus increasing the overhead of that sampler. Further,
we have two options: either store this predicted watermark
with a block, or manipulate a block on insertion and allow
an update until a block is predicted to not be hit. The first
option evicts in the manner described previously. The second
option translates watermarks to the number of tree nodes to
toggle from root to leaf (way). This value is used to move a
newly inserted block near MRU with respect to the associated
watermark prediction as opposed to MRU. Like DBP [2],
SHiP [4], and Perceptron [14], we modify watermark for
intervention at insertion and promotion, rather than tracking
additional information per block.

C. Generalize Watermark: Set-wise Hit Behavior

While addressing some overhead and prediction concerns,
we’ve introduced an issue of unknown behavior reuse behav-
ior. Set-dueling addresses this by only operating in the two
states dictated by the set dueling counter and set dueling
monitors. Sampler based predictors also assume two states,
with hit predictors determing if a given block is hit or not
after the current access. By adding reuse distance, we’ve
introduced unknown reuse on first access in the scenario where
a block transitions from dead to live in the cache. In these
situations, we added set-wise reuse counters for generalized
hit behavior. These counters are consulted when there is not
watermark. After addressing the above, we show the final
hardware diagram in Figure 3. It is worth noting that this
sampler uses pLRU in order to better In the figure, we see
constants representing number of sampler entries, table entries,
and watermark width. For brevity, we do not discuss tuning so
we present a good configuration where S, N, and W are 64,

12, and 2, respectively. Figure 4 shows the geometric mean
speedup demonstrated for each version of watermark for the
SPEC 2006 benchmark suite [8].

V. RESULTS AND ANALYSIS

Figure 5 shows results for all benchmarks in SPEC 2006.
The policies that we are evaluating are shown in this order:
DBP, SHiP, Perceptron, and the sampler-based version of
Watermarking we discussed in section IV, hereby known as
WM-Tree. These results are in comparison to a pLRU back,
2MB, inclusive LLC, and higher is better. From the figure, the
IPC graph (right) shows that there are certain workloads which
benefit greatly from all of these prediction based policies (gcc,
mcf, sphinx3). There are even a few that prefer one predictor
over another (e.g. Ibm, leslie, libquantum, soplex, and wrf
favor DBP). However, the remaining workloads show little
to no benefit from these predictors. In fact, the figure show-
ing normalized MPKI (left) highlights that these techniques
increase misses, but the workloads are either tolerant to this
loss or slow down.

Figure 6 shows the normalized geometric mean for MPKI
for 4 differnt configurations of the LLC. Please note that we
do not show normalized geometric mean IPC because of how
small the changes are. The Inclusive column shows DBP, SHiP,
Perceptron, and WM-Tree have 2.2%, 1%, 1.9%, and 0.9%
speedup, respectively. Further, the four predictors demonstrate
MPKI increases of 24%, 8%, 20%, and 200%, respectively.
DBP has the greatest speedup, but also the greatest MPKI
increase. Predictor accuracy plays a part here. The three
skewed table structure implemented in DBP allows for block
“revival,” or for some correlating information to not get stuck
in either a dead or not state. The indexing scheme prevents
this, but that does not make DBP immune to mistakes, as
is evidenced by the MPKI increase. SHiP does not have the
performance impact of DBP, but it also does not miss as often.
While only using one predictor table, being built on top of
a better performing base policy (SRRIP) and not bypassing
allows SHiP to minimize the impact of incorrect predictions.
Perceptron outperforms both SHiP and WM-Tree, but does
not match up to DBP in this context.The reasoning can be
attributed to not tuning the policy parameters to a 2MB cache,
and reliance on bypassing.

However, this cannot be said for WM-Tree. WM-Tree
depends on two tables, one with a watermark prediction and
one with prediction counters (similar to SHiP). In applying
watermarking to a predictor, we did not address the fact that
once a WM is set, dead or not, it would not be unset. Further,
pLRU can only guarantee the MRU position, and therefore
can only guarantee a tree distance of 0 assuming the MRU
block is hit in consecutive accesses. Another issue with tree
distance as a reuse proxy is aliasing of reuse distance. Given
the design of samplers and the overhead restrictions, assuming
local data can contribute to generalized behavior in this way
is naive. Having said that, we were curious to see if removing
the overhead state restrictions would allow WM-Tree to show
some improvement. The results showed that we could match
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Fig. 6. Geometric Mean Comparison of MPKI for all predictors analysed across 4 cache configurations: Inclusive LLC; Inclusive LLC + Prefetcher; Non-

Inclusive LLC; Non-Inclusive LLC + Prefetcher.

DBP in terms of performance given an unlimited watermark
table, which is not practical. The implication of this analysis
is that ping-pong behavior is not prevalent enough within
workload patterns to warrant recording local reuse information
in a naive fashion. Given the resource constraints placed on
modern caches. Lastly, modern versions of predictors [14],
[15] that out perform DBP have been published since 2010.

A. Prefetching

Prefetchers are common components of a given cache
hierarchy, so evaluating these techniques in that context mod-
ernizes our configuration in one aspect. In Figure 6, The
Inclusive+Prefetcher column shows the normalized IPC and
normalized MPKI for each predictor in context of a stride

streaming prefetcher. All performance metrics are in com-
parison to a pLRU backed, 2MB inclusive LLC with the
mentioned prefetcher. Here, performance trends remain the
same as in the non-prefetching case discussed in the previous
subsection. However, WM-Tree now does worse that the base
configuration. We attribute this to prefetched blocks being
assigned watermarks before they have a chance to be inserted
into the cache. While we attempt to mitigate that with general
hit information provided by the set-wise counters, this does
not prevent the decrease in performance.

B. Inclusiveness

Cache inclusiveness is also different in modern caches
which is made evident by the Skylake [11] architecture which
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implements a non-inclusive LLC, and that ChampSim [9] is
based on Skylake. In figure 6, the Non-Inclusive column shows
normalized IPC and normalized MPKI for each predictor
in context of a non-inclusive LLC. All performance metrics
are normalized to a pLRU-backed, 2MB inclusive cache. In
this context, DBP still outperforms the other 2 techniques,
but by a slimmer margin. The implication here is that non-
inclusive caches are more forgiving of incorrect insertion
and eviction predictions, which can simultaneously hide naive
technique errors. The final column in figure 6 titled Non-
Inclusive+Prefetcher shows normalized IPC and normalized
MPKI data for each predictor. These metrics are normalized
to a pLRU variant. In adding prefetching, we further normal-
ize behavior for all predictors, implying non-inclusion and
prefetching remove misses and opportunities for predictors to
improve or worsen performance.

C. ChampSim vs CMP$im

Our evaluations of the above predictors are done in context
of a new simulator which was used in the recent Cache
Replacement Competition [10] (ChampSim). Champsim suc-
ceeds CMP$im [16]. The differences in these two simula-
tors can be seen in the base architectures they emulate(i.e.
ChampSim emulates Intel’s Skylake, while CMP$im emulates
Nehalem [17]). Further, ChampSim does not default to perfect
branch prediction, does not implement an inclusive cache, and
does not allow bypassing on writebacks (the CRC1 version of
CMPS$im does all of these things). Having said that, figure

7 shows SPEC 2006 performance results for all predictors
on CMPS$im to demonstrate the utility of these predictors
in a different and less modern simulator. Immediately we
see IPC is much higher in CMPS$im for all predictors, and
MPKI is reduced rather than increased. WM-Tree still does not
outperform DBP at 2MB, but it can match the other predictors
at this cache size, implying that even in a simulator primed
to minimize architectural influence on cache management,
our technique still falls short. Another takeaway here is that
modern caches and architectures minimize the efficacy of
predictors that appear to do well in older architectures.

VI. CONCLUSION

In attempting to add local characterization to reuse pre-
diction with watermarks, we’ve inadverdently lessened the
average impact on performance. While our tree distance ap-
proximation of the reuse stack is novel and positively impacts
a subset of workloads (cactusADM, gcc, mcf, sphinx3), that
approximation also negatively impacts other workloads that
are not impacted by modern predictors (bzip2, gemsFDTD,
omnetpp, zeusmp). Pursuing a means of minimizing the neg-
ative results diminished the positive results. Further, naive
assumptions on a particular access pattern drove discovery of
the nuance in cache access prediction.
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