
Approximate Computing Is Dead;
Long Live Approximate Computing
Adrian Sampson

Cornell

Hardware Programming

Quality Domains

Hardware Programming

Quality Domains

No more approximate functional units.

(LSBs) (k < n). A speculative design makes an adder sig-
nificantly faster than the conventional design. Segmented
adders are proposed in [7,19,27]. An n-bit segmented adder
is implemented by several smaller adders operating in par-
allel. Hence, the carry propagation chain is truncated into
shorter segments. Segmentation is also utilized in [1,5,8,10,
12,25], but their carry inputs for each sub-adder are selected
differently. This type of adder is referred to as a carry se-
lect adder. Another method for reducing the critical path
delay and power dissipation of a conventional adder is by
approximating the full adder [2, 17,20,24]; the approximate
adder is usually applied to the LSBs of an accurate adder.
In the sequel, the approximate adders are divided into four
categories.

2.1 Speculative Adders
As the carry chain is significantly shorter than n in most

practical cases, [23] has proposed an almost correct adder
(ACA) based on the speculative adder design of [16]. In an
n-bit ACA, k LSBs are used to predict the carry for each
sum bit (n > k), as shown in Fig. 1. Therefore, the critical
path delay is reduced to O(log(k)) (for a parallel implemen-
tation such as CLA, the same below). As an example, four
LSBs are used to calculate each carry bit in Fig. 1. As
each carry bit needs a k-bit sub-carry generator in the de-
sign of [16], (n − k) k-bit sub-carry generators are required
in an n-bit adder and thus, the hardware overhead is rather
high. This issue is solved in [23] by sharing some compo-
nents among the sub-carry generators. Moreover, a variable
latency speculative adder (VLSA) is then proposed with an
error detection and recovery scheme [23]. VLSA achieves a
speedup of 1.5× on average compared to CLA.

2.2 Segmented adders

2.2.1 The Equal Segmentation Adder (ESA)
A dynamic segmentation with error compensation (DSEC)

is proposed in [19] to approximate an adder. This scheme
divides an n-bit adder into a number of smaller sub-adders;
these sub-adders operate in parallel with fixed carry inputs.
In this paper, the error compensation technique is ignored
because the focus is on the approximate design, so the equal
segmentation adder (ESA) (Fig. 2) is considered as a simple
structure of the DSEC adder. In Fig. 2,

⌈
n
k

⌉
sub-adders are

used, l is the size of the first sub-adder (l ≤ k), and k is
the size of the other sub-adders. Hence, the delay of ESA
is O(log(k)) and the hardware overhead is significantly less
than ACA.

2.2.2 The Error-Tolerant Adder Type II (ETAII)
Another segmentation based approximate adder (ETAII)

is proposed in [27]. Different from ESA, ETAII consists of
carry generators and sum generators, as shown in Fig. 3 (n
is the adder size; k is the size of the carry and sum gener-
ators). The carry signal from the previous carry generator
propagates to the next sum generator. Therefore, ETAII
utilizes more information to predict the carry bit and thus,
it is more accurate compared with ESA for the same k. Be-
cause the sub-adders in ESA produce both sum and carry,
the circuit complexity of ETAII is similar to ESA, however
its delay is larger (O(log(2k))). In addition to ETAII, sev-
eral other error tolerant adders (ETAs) have been proposed
by the same authors in [26,28,29].

Figure 1: The almost correct adder (ACA). : the carry
propagation path of the sum bit.

Figure 2: The equal segmentation adder (ESA). k: the max-
imum carry chain length; l: the size of the first sub-adder
(l ≤ k).

Figure 3: The error-tolerant adder type II (ETAII) [27]: the
carry propagates through the two shaded blocks.

2.2.3 Accuracy-Configurable Approximate Adder
An accuracy-configurable approximate adder (ACAA) is

proposed in [7]. As accuracy can be configured at runtime
by changing the circuit structure, a tradeoff of accuracy ver-
sus performance and power can be achieved. In an n-bit
adder,

⌈
n
k − 1

⌉
2k-bit sub-adders are required. Each sub-

adder adds 2k consecutive bits with an overlap of k bits, and
all 2k-bit sub-adders operate in parallel to reduce the delay
to O(log(2k)). In each sub-adder, the half most significant
sum bits are selected as the partial sum. An error detection
and correction (EDC) circuit is used to correct the errors
generated by each sub-adder. The accuracy configuration is
implemented by the approximate adder and its EDC with
a pipelined architecture. For the same k, the carry propa-
gation path is the same for each sum bit as in ACAA and
ETAII; hence they have the same error characteristics.

2.2.4 The Dithering Adder
The dithering adder [18] starts by dividing a multiple-

bit adder into two sub-adders. The higher sub-adder is an
accurate adder and the lower sub-adder consists of a con-
ditional upper bounding module and a conditional lower
bounding module. An additional “Dither Control” signal

344

(LSBs) (k < n). A speculative design makes an adder sig-
nificantly faster than the conventional design. Segmented
adders are proposed in [7,19,27]. An n-bit segmented adder
is implemented by several smaller adders operating in par-
allel. Hence, the carry propagation chain is truncated into
shorter segments. Segmentation is also utilized in [1,5,8,10,
12,25], but their carry inputs for each sub-adder are selected
differently. This type of adder is referred to as a carry se-
lect adder. Another method for reducing the critical path
delay and power dissipation of a conventional adder is by
approximating the full adder [2, 17,20,24]; the approximate
adder is usually applied to the LSBs of an accurate adder.
In the sequel, the approximate adders are divided into four
categories.

2.1 Speculative Adders
As the carry chain is significantly shorter than n in most

practical cases, [23] has proposed an almost correct adder
(ACA) based on the speculative adder design of [16]. In an
n-bit ACA, k LSBs are used to predict the carry for each
sum bit (n > k), as shown in Fig. 1. Therefore, the critical
path delay is reduced to O(log(k)) (for a parallel implemen-
tation such as CLA, the same below). As an example, four
LSBs are used to calculate each carry bit in Fig. 1. As
each carry bit needs a k-bit sub-carry generator in the de-
sign of [16], (n − k) k-bit sub-carry generators are required
in an n-bit adder and thus, the hardware overhead is rather
high. This issue is solved in [23] by sharing some compo-
nents among the sub-carry generators. Moreover, a variable
latency speculative adder (VLSA) is then proposed with an
error detection and recovery scheme [23]. VLSA achieves a
speedup of 1.5× on average compared to CLA.

2.2 Segmented adders

2.2.1 The Equal Segmentation Adder (ESA)
A dynamic segmentation with error compensation (DSEC)

is proposed in [19] to approximate an adder. This scheme
divides an n-bit adder into a number of smaller sub-adders;
these sub-adders operate in parallel with fixed carry inputs.
In this paper, the error compensation technique is ignored
because the focus is on the approximate design, so the equal
segmentation adder (ESA) (Fig. 2) is considered as a simple
structure of the DSEC adder. In Fig. 2,

⌈
n
k

⌉
sub-adders are

used, l is the size of the first sub-adder (l ≤ k), and k is
the size of the other sub-adders. Hence, the delay of ESA
is O(log(k)) and the hardware overhead is significantly less
than ACA.

2.2.2 The Error-Tolerant Adder Type II (ETAII)
Another segmentation based approximate adder (ETAII)

is proposed in [27]. Different from ESA, ETAII consists of
carry generators and sum generators, as shown in Fig. 3 (n
is the adder size; k is the size of the carry and sum gener-
ators). The carry signal from the previous carry generator
propagates to the next sum generator. Therefore, ETAII
utilizes more information to predict the carry bit and thus,
it is more accurate compared with ESA for the same k. Be-
cause the sub-adders in ESA produce both sum and carry,
the circuit complexity of ETAII is similar to ESA, however
its delay is larger (O(log(2k))). In addition to ETAII, sev-
eral other error tolerant adders (ETAs) have been proposed
by the same authors in [26,28,29].

Figure 1: The almost correct adder (ACA). : the carry
propagation path of the sum bit.

Figure 2: The equal segmentation adder (ESA). k: the max-
imum carry chain length; l: the size of the first sub-adder
(l ≤ k).

Figure 3: The error-tolerant adder type II (ETAII) [27]: the
carry propagates through the two shaded blocks.

2.2.3 Accuracy-Configurable Approximate Adder
An accuracy-configurable approximate adder (ACAA) is

proposed in [7]. As accuracy can be configured at runtime
by changing the circuit structure, a tradeoff of accuracy ver-
sus performance and power can be achieved. In an n-bit
adder,

⌈
n
k − 1

⌉
2k-bit sub-adders are required. Each sub-

adder adds 2k consecutive bits with an overlap of k bits, and
all 2k-bit sub-adders operate in parallel to reduce the delay
to O(log(2k)). In each sub-adder, the half most significant
sum bits are selected as the partial sum. An error detection
and correction (EDC) circuit is used to correct the errors
generated by each sub-adder. The accuracy configuration is
implemented by the approximate adder and its EDC with
a pipelined architecture. For the same k, the carry propa-
gation path is the same for each sum bit as in ACAA and
ETAII; hence they have the same error characteristics.

2.2.4 The Dithering Adder
The dithering adder [18] starts by dividing a multiple-

bit adder into two sub-adders. The higher sub-adder is an
accurate adder and the lower sub-adder consists of a con-
ditional upper bounding module and a conditional lower
bounding module. An additional “Dither Control” signal

344

(LSBs) (k < n). A speculative design makes an adder sig-
nificantly faster than the conventional design. Segmented
adders are proposed in [7,19,27]. An n-bit segmented adder
is implemented by several smaller adders operating in par-
allel. Hence, the carry propagation chain is truncated into
shorter segments. Segmentation is also utilized in [1,5,8,10,
12,25], but their carry inputs for each sub-adder are selected
differently. This type of adder is referred to as a carry se-
lect adder. Another method for reducing the critical path
delay and power dissipation of a conventional adder is by
approximating the full adder [2, 17,20,24]; the approximate
adder is usually applied to the LSBs of an accurate adder.
In the sequel, the approximate adders are divided into four
categories.

2.1 Speculative Adders
As the carry chain is significantly shorter than n in most

practical cases, [23] has proposed an almost correct adder
(ACA) based on the speculative adder design of [16]. In an
n-bit ACA, k LSBs are used to predict the carry for each
sum bit (n > k), as shown in Fig. 1. Therefore, the critical
path delay is reduced to O(log(k)) (for a parallel implemen-
tation such as CLA, the same below). As an example, four
LSBs are used to calculate each carry bit in Fig. 1. As
each carry bit needs a k-bit sub-carry generator in the de-
sign of [16], (n − k) k-bit sub-carry generators are required
in an n-bit adder and thus, the hardware overhead is rather
high. This issue is solved in [23] by sharing some compo-
nents among the sub-carry generators. Moreover, a variable
latency speculative adder (VLSA) is then proposed with an
error detection and recovery scheme [23]. VLSA achieves a
speedup of 1.5× on average compared to CLA.

2.2 Segmented adders

2.2.1 The Equal Segmentation Adder (ESA)
A dynamic segmentation with error compensation (DSEC)

is proposed in [19] to approximate an adder. This scheme
divides an n-bit adder into a number of smaller sub-adders;
these sub-adders operate in parallel with fixed carry inputs.
In this paper, the error compensation technique is ignored
because the focus is on the approximate design, so the equal
segmentation adder (ESA) (Fig. 2) is considered as a simple
structure of the DSEC adder. In Fig. 2,

⌈
n
k

⌉
sub-adders are

used, l is the size of the first sub-adder (l ≤ k), and k is
the size of the other sub-adders. Hence, the delay of ESA
is O(log(k)) and the hardware overhead is significantly less
than ACA.

2.2.2 The Error-Tolerant Adder Type II (ETAII)
Another segmentation based approximate adder (ETAII)

is proposed in [27]. Different from ESA, ETAII consists of
carry generators and sum generators, as shown in Fig. 3 (n
is the adder size; k is the size of the carry and sum gener-
ators). The carry signal from the previous carry generator
propagates to the next sum generator. Therefore, ETAII
utilizes more information to predict the carry bit and thus,
it is more accurate compared with ESA for the same k. Be-
cause the sub-adders in ESA produce both sum and carry,
the circuit complexity of ETAII is similar to ESA, however
its delay is larger (O(log(2k))). In addition to ETAII, sev-
eral other error tolerant adders (ETAs) have been proposed
by the same authors in [26,28,29].

Figure 1: The almost correct adder (ACA). : the carry
propagation path of the sum bit.

Figure 2: The equal segmentation adder (ESA). k: the max-
imum carry chain length; l: the size of the first sub-adder
(l ≤ k).

Figure 3: The error-tolerant adder type II (ETAII) [27]: the
carry propagates through the two shaded blocks.

2.2.3 Accuracy-Configurable Approximate Adder
An accuracy-configurable approximate adder (ACAA) is

proposed in [7]. As accuracy can be configured at runtime
by changing the circuit structure, a tradeoff of accuracy ver-
sus performance and power can be achieved. In an n-bit
adder,

⌈
n
k − 1

⌉
2k-bit sub-adders are required. Each sub-

adder adds 2k consecutive bits with an overlap of k bits, and
all 2k-bit sub-adders operate in parallel to reduce the delay
to O(log(2k)). In each sub-adder, the half most significant
sum bits are selected as the partial sum. An error detection
and correction (EDC) circuit is used to correct the errors
generated by each sub-adder. The accuracy configuration is
implemented by the approximate adder and its EDC with
a pipelined architecture. For the same k, the carry propa-
gation path is the same for each sum bit as in ACAA and
ETAII; hence they have the same error characteristics.

2.2.4 The Dithering Adder
The dithering adder [18] starts by dividing a multiple-

bit adder into two sub-adders. The higher sub-adder is an
accurate adder and the lower sub-adder consists of a con-
ditional upper bounding module and a conditional lower
bounding module. An additional “Dither Control” signal

344

Figure 4: The speculative carry selection adder (SCSA).

is used to configure an upper or lower bound of the lower
sum and carry into the higher accurate sub-adder, resulting
in a smaller overall error variance.

2.3 Carry Select Adders
In the carry select adders, several signals are commonly

used: generate gj = ajbj , propagate pj = aj ⊕ bj , and P i =
k−1∏
j=0

pij . P
i = 1 means that all k propagate signals in the ith

block are true.

2.3.1 The Speculative Carry Select Adder (SCSA)
The SCSA is proposed in [1]. An n-bit SCSA consists

of m =
⌈
n
k

⌉
sub-adders (window adders). Each sub-adder

is made of two k-bit adders: adder0 and adder1, as shown
in Fig. 4. Adder0 has carry-in “0” while the carry-in of
adder1 is “1”; then the carry-out of adder0 is connected to
a multiplexer to select the addition result as a part of the
final result. Thus, the critical path delay of SCSA is tadder+
tmux, where tadder is the delay of the sub-adder (O(log(k))),
and tmux is the delay of the multiplexer. SCSA and ETAII
achieve the same accuracy for the same parameter k, because
the same function is used to predict the carry for every sum
bit. Compared with ETAII, SCSA uses an additional adder
and multiplexer in each block and thus, the circuit of SCSA
is more complex than ETAII.

2.3.2 The Carry Skip Adder (CSA)
Similar to SCSA, an n-bit carry skip adder (CSA) [8] is

divided into
⌈
n
k

⌉
blocks, but each block consists of a sub-

carry generator and a sub-adder. The carry-in of the (i+1)th

sub-adder is determined by the propagate signals of the ith

block: the carry-in is the carry-out of the (i−1)th sub-carry
generator when all the propagate signals are true (P i = 1),
otherwise it is the carry-out of the ith sub-carry generator.
Therefore, the critical path delay of CSA is O(log(2k)). This
carry select scheme enhances the carry prediction accuracy.

2.3.3 The Gracefully-Degrading Accuracy-Configurable
Adder (GDA)

An accuracy-configurable adder, referred to as the gracefully-
degrading accuracy-configurable adder (GDA), is presented
in [25]. Control signals are used to configure the accuracy
of GDA by selecting the accurate or approximate carry-in
using a multiplexer for each sub-adder. The delay of GDA is
determined by the carry propagation and thus by the control
signals to multiplexers.

2.3.4 The Carry Speculative Adder
Different from SCSA, the carry speculative adder (CSPA)

in [12] contains one sum generator, two internal carry gener-

ators (one with carry-0 and one with carry-1) and one carry
predictor in each block. The output of the ith carry pre-
dictor is used to select carry signals for the (i + 1)th sum
generator. l input bits (rather than k, l < k) in a block are
used in a carry predictor. Therefore, the hardware overhead
is reduced compared to SCSA.

2.3.5 The Consistent Carry Approximate Adder
The consistent carry approximate adder (CCA) [10] is also

based on SCSA. Likewise, each block of CCA comprises
adder0 with carry-0 and adder1 with carry-1. The select
signal of a multiplexer is determined by the propagate sig-
nals, i.e., Si = (P i + P i−1)SC + (P i + P i−1)Ci−1

out , where
Ci−1

out is the carry out of the (i − 1)th adder0, and SC is a
global speculative carry (referred to as a consistent carry).
In CCA, the carry prediction depends not only on its LSBs,
but also on the higher bits. The critical path delay and area
complexity of CCA are similar to SCSA.

2.3.6 The Generate Signals Exploited Carry Specu-
lation Adder (GCSA)

In [5], the generate signals are used for carry speculation.
GSCA has a similar structure as CSA. The only difference
between them is the carry selection; the carry-in for the
(i + 1)th sub-adder is selected by its own propagate signals
rather than its previous block. The carry-in is the most
significant generate signal gik−1 of the ith block if P i = 1, or
else it is the carry-out of the ith sub-carry generator. The
critical path delay of GCSA is O(log(2k)) due to the carry
propagation. This carry selection scheme effectively controls
the maximal relative error.

2.4 Approximate Full Adders

2.4.1 The Lower-Part-OR Adder (LOA)
LOA [17] divides an n-bit adder into an (n − l)-bit more

significant sub-adder and an l-bit less significant sub-adder.
For the less significant sub-adder, its inputs are simply pro-
cessed by using OR gates (as a simple approximate full
adder). The more significant (n − l)-bit sub-adder is an
accurate adder. An extra AND gate is used to generate the
carry-in signal for the more significant sub-adder by AND-
ing the most significant input bits of the less significant sub-
adder. The critical path of LOA is from the AND gate
to the most significant sum bit of the accurate adder, i.e.,
approximately O(log(n − l)). LOA has been utilized in a
recently-proposed approximate floating-point adder [14].

2.4.2 Approximate Mirror Adders (AMAs)
In [2], five AMAs are proposed by reducing the number of

transistors and the internal node capacitance of the mirror
adder (MA). The AMA adder cells are then used in the
LSBs of a multiple-bit adder. However, the critical paths of
AMA1-4 are longer than LOA because the carry propagates
through every bit. As for AMA5, the carry-out is one of the
inputs; thus, no carry propagation exists in the LSBs of an
approximate multiple-bit adder.

2.4.3 Approximate Full Adders using Pass Transis-
tors

Three approximate adders (AXAs) based on XOR/XNOR
gates and multiplexers (implemented by pass transistors)
have been presented in [24]. Several approximate comple-

345

of output Peak Signal-to-Noise Ratio (PSNR). PSNR is the
maximal power of the output signal divided by the MSE, i.e.,
PSNR(x) [dB] = 10. log

h
max(x2)
MSE(x)

i
. The exact multipliers

used alongside the modified adders are optimally sized ac-
cording to the adder bit-width, so they are not source of error.
For any accuracy constraint, FxP adders (truncation or round-
ing) notably dominate approximate adders. This supremacy
could be explained by two factors: the relative energy cost
of multipliers with regards to adders and the need for less
operand size for the multiplier when reducing the accuracy
of additions. This figure also shows the great potential of
energy reduction when playing with accuracy of the fixed-
point operators. A first conclusion here is that reducing the
FxP adder size provides a smaller entropy of the data pro-
cessed, transported and stored, than keeping the same bit-
width along the computations but containing approximations.
The same experiment is performed using 16-bit AAM and

10 20 30 40 50 60 70 80

PSNR (dB)

2

4

6

8

10

12

14

16

18

PD
P

(p
J)

#10 -3

ACA
ETAIV
RCAapx Type 1
RCAapx Type 2
RCAapx Type 3
Fixed-Point trunc.
Fixed-Point round.

Fig. 5: Power consumption of FFT-32 versus output PSNR
using 16-bit approximate adders
ABM multipliers and a 16-bit truncated FxP multiplier, while
keeping 16-bit exact adders. Table II shows that AAM and
FxP multiplier differ only by 6 dB of of accuracy. However,
AAM consumes 78% more energy that fixed-point. Results
on the FFT comfort the conclusion of Section IV. Providing
results with both approximate adders and multipliers in the
same simulation will not lead to a different conclusion.

MULt (16, 16) AAM (16) ABM (16)
PSNR (dB) 53.88 59.66 �18.14
PDP (pJ) 0.249 0.442 0.446

TABLE II: Accuracy and energy consumption of FFT-32 using
16-bit fixed-width multipliers

B. JPEG Encoding
The second application is a JPEG encoder, representative of

image processing. The main algorithm of this encoder is the
Discrete Cosine Transform (DCT). To obtain an approximate
version of the encoder, DCT operations are computed using
fixed-point or approximate operators. The quality metric to
compare the exact and the approximate versions of the JPEG
encoder is the Mean Structural Similarity (MSSIM) [12],

which is representative of the human perception of image
degradation. This metric results in a score between [0, 1], 1
representing a perfect quality. To obtain Figure 6, the DCT
energy consumption is compared for all presented approximate
adders, as well as for fixed-point versions. The algorithm is
applied with an encoding effort of 90% on the image Lena. As
observed for the FFT, the fixed-point versions of the algorithm
are much more energy efficient than for approximate operators,
mostly thanks to the bits dropped during the calculation.

0 0.2 0.4 0.6 0.8 1
MSSIM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
P

(p
J)

#10 -3

ACA
ETAIV
RCAapx Type 1
RCAapx Type 2
RCAapx Type 3
Fixed-Point trunc.
Fixed-Point round.

Fig. 6: Power consumption of DCT in JPEG encoding versus
output MSSIM using 16-bit approximate adders

C. Motion Compensation filter for HEVC decoder

HEVC is the new generation of video compression stan-
dard. Efficient prediction of a block from the others requires
fractional position motion compensation (MC) carried-out by
interpolation filters. These MC filters are modified using fixed-
point and approximate operators to test their accuracy and
energy efficiency. Previously described MSSIM metric is used
to determine the output accuracy of the filter on a classical
signal processing image. Table III gives the energy spent by
the MC filter replacing all its additions by adders producing an
MSSIM of approximately 0.99. In their 16-bit version, ACA
and ETAIV can only reach respectively 0.96 and 0.98. In any
case and as discussed above, the multiplier overhead provokes
an energy consumption which is 4.6 times superior for the
approximate version than for the truncated FxP version. For
multipliers replacement, Table III shows that both 16-bit AAM
and ABM produce an accuracy similar to fixed-width truncated
FxP multiplier. Moreover, replacing multipliers by ABM in the
MC filter do not lead to an important energy overhead, which
makes it competitive considering that its delay is 37% inferior
to MULt(16, 16) according to Table I. However, AAM suffers
from an important energy overhead.

D. K-means Clustering

The last experiment presented in this section is K-means
clustering. Given a bidimensional point cloud, this algorithm
classifies them finding centroids and assigning each point to
the cluster defined by the nearest centroid. At the core of K-
means clustering is distance computation. For the experiment,

better accuracy

better efficiency

Narrower bit widths are 
just as good or better
[Barrois et al., DATE 2017] approximate adders from the literature

just varying the
adder width

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

Dual-voltage approximate CPU
[ASPLOS 2012]

Fetch Decode Reg Read Execute Memory WB

Br. Predictor

Instruction
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

replicated functional units

dual-voltage SRAM arrays

fft im
ag
ef
ill

jm
ei
nt

lu m
c

ra
yt
ra
ce
r

sm
m

so
r

zx
in
g

ALU

cache

FPU

multiplier

registers

together

(a)

Sensitivity to errors in all components

error probability

ap
pl

ic
at

io
n

ou
tp

ut
 e

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●

●

● ● ●

● ● ● ●

●

●

●

● ● ● ● ●

●

●

10−8 10−7 10−6 10−5 10−4 10−3 10−2

application
● fft

imagefill
jmeint

● lu
mc
raytracer

● smm
sor
zxing

(b)

Figure 9. Application sensitivity to circuit-level errors. Each cell
in (a) has the same axes as (b): application QoS degradation is
related to architectural error probability (on a log scale). The grid
(a) shows applications’ sensitivity to errors in each component in
isolation; the row labeled “together” corresponds to experiments
in which the error probability for all components is the same. The
plot (b) shows these “together” configurations in more detail. The
output error is averaged over 20 replications.

and in-order designs is significantly reduced. In one case, imagefill,
the checked OOO Truffle core shows higher potential compared to
the checked in-order Truffle core. In this benchmark, the energy
consumption of the instruction control plane is more dominant in
the OOO design and thus lower voltage for that plane is more ef-
fective than in the in-order design. Note that in an actual design,
energy savings will be restricted by the error rates in the instruc-
tion control plane and the rate at which the precise instructions fail,
triggering error recovery. The overhead of the error-checking struc-
tures will further limit the savings.

5.4 Error Propagation from Circuits to Applications

We now present a study of application QoS degradation as we inject
errors in each of the microarchitectural structures that support ap-
proximate behavior. The actual pattern of errors caused by voltage
reduction is highly design-dependent. Modeling the error distribu-
tions of approximate hardware is likely to involve guesswork; the
most convincing evaluation of error rates would come from exper-
iments with real Truffle hardware. For the present evaluation, we
thoroughly explore a space of error rates in order to characterize
the range of possibilities for the impact of approximation.

Figure 9 shows each benchmark’s sensitivity to circuit-level
errors in each microarchitectural component. Some applications
are significantly sensitive to error injection in most components

(fft, for example); others show very little degradation (imagefill,
raytracer, mc, smm). Errors in some components tend to cause
more application-level errors than others—for example, errors in
the integer functional units (ALU and multiplier) only cause output
degradation in the benchmarks with significant approximate integer
computation (imagefill and zxing).

The variability in application sensitivity highlights again the
utility of using a tunable VddL to customize the architecture’s error
rate on a per-application basis (see Section 3). Most applications
exhibit a critical error rate at which the application’s output quality
drops precipitously—for example, in Figure 9(b), fft exhibits low
output error when all components have error probability 10

�6 but
significant degradation occurs at probability 10

�5. A software-
controllable VddL could allow each application to run at its lowest
allowable power while maintaining acceptable output quality.

In general, the benchmarks do not exhibit drastically different
sensitivities to errors in different components. A given benchmark
that is sensitive to errors in the register file, for example, is also
likely to be sensitive to errors in the cache and functional units.

6. Related Work

A significant amount of prior work has proposed hardware that
compromises on execution correctness for benefits in performance,
energy consumption, and yield. ERSA proposes collaboration be-
tween discrete reliable and unreliable cores for executing error-
resilient applications [16]. Stochastic processors encapsulate an-
other proposal for variable-accuracy functional units [22]. Proba-
bilistic CMOS (PCMOS) proposes to use the probability of low-
voltage transistor switching as a source of randomness for special
randomized algorithms [5]. Finally, algorithmic noise-tolerance
(ANT) proposes approximation in the context of digital signal
processing [12]. Our proposed dual-voltage design, in contrast,
supports fine-grained, single-core approximation that leverages
language support for explicit approximation in general-purpose
applications. It does not require manual offloading of code to co-
processors and permits fully-precise execution on the same core
as low-power approximate instructions. Truffle extends general-
purpose CPUs; it is not a special-purpose coprocessor.

Relax is a compiler/architecture system for suppressing hard-
ware fault recovery in certain regions of code, exposing these errors
to the application [9]. A Truffle-like architecture supports approx-
imation at a single-instruction granularity, exposes approximation
in storage elements, and guarantees precise control flow even when
executing approximate code. In addition, Truffle goes further and
elides fault detection as well as recovery where it is not needed.

Razor and related techniques also use voltage underscaling for
energy reduction but use error recovery to hide errors from the ap-
plication [10, 14]. Disciplined approximate computation can enable
energy savings beyond those allowed by correctness-preserving op-
timizations.

Broadly, the key difference between Truffle and prior work is
that Truffle was co-designed with language support. Specifically,
relying on disciplined approximation with strong static guarantees
offered by the compiler and language features enables an efficient
and simple design. Static guarantees also lead to strong safety
properties that significantly improve programmability.

The error-tolerant property of certain applications is supported
by a number of surveys of application-level sensitivity to circuit-
level errors [8, 18, 27]. Truffle is a microarchitectural technique for
exploiting this application property to achieve energy savings.

Dual-voltage designs are not the only way to implement low-
power approximate computation. Fuzzy memoization [2] and bit-
width reduction [26], for example, are orthogonal techniques for
approximating floating-point operations. Imprecise integer logic
blocks have also been designed [20]. An approximation-aware pro-

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

14 • 2014 IEEE International Solid-State Circuits Conference 978-1-4799-0920-9/14/$31.00 ©2014 IEEE

ISSCC 2014 / SESSION 1 / PLENARY / 1.1

Figure 1.1.7: Power breakdown of an 8 core server chip. Figure 1.1.8: Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.

88�cores
L1/reg/TLB
L2
L3L3

Chip Year Paper Description

1 2009 3.8 Dunnington

2 2010 5.7 MSGͲPassing

Chip Year Paper Description

10 2012 10.6 3D�Proc.

11 2013 9.3 H.264
2 2010 5.7 MSG Passing

3 2010 5.5 WireͲspeed

4 2011 4.4 GodsonͲ3B

5 2013 3.5 GodsonͲ3B1500

12 2012 28.8 Razor�SIMD

13 2011 7.1 3DTV

14 2011 7.3 Multimedia

15 2011 19.1 ECG/EEG
6 2011 15.1 Sandy�Bridge

7 2012 3.1 Ivy�Bridge

8 2011 15.4 Zacate

9 2013 9.4 ARMͲv7A

16 2010 18.4 Obj.�Recog.

17 2012 12.4 Obj.�Recog.

18 2013 9.8 Obj.�Recog.

19 2011 7 4 N l N k19 2011 7.4 Neural�Network

20 2013 28.2 Visual.�Recog.

Dedicated
10000

W
)

Chip�type:
Microprocessor
Microprocessor + GPU

GP�DSPs
100

1000

y�
(M

OP
S/
m
W

Microprocessor�+�GPU
General�purpose�DSP
Dedicated�design CPUs

1

10

gy
�Ef

fic
ie
nc
y CPUs+GPU

s ~1000x

D. Markovic / Slide1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.1

1

En
er
g

,QWHJHU
$GG

)3
)$GG

0HPRU\
&DFKH ���ELW�$GG

��ELW ����S-
���ELW ���S-

)$GG
���ELW ���S-
���ELW ���S-

&DFKH ���ELW�
�.% ��S-
��.% ��S-

0XOW
��ELW ���S-
���ELW ���S-

)0XOW
���ELW ���S-
���ELW ���S-

�0% ���S-
'5$0 �������Q-

Instruction Energy Breakdown

70�pJ25pJ 6pJ Control

I-Cache Access Register File
Access

Add

The Horowitz imbalance
a name I made up for this talk

[ISSCC 2014]

 כ

DAG G for
z=(x+y)2

Graph H for hardware of
spatial architecture

A Mapping of G to H

 כ +
x

y

z

y x

+

z

edges
(E)

vertices
(V) routers (R)

nodes (N) links (L)

Figure 1. Example of computation G mapped to hardware H .

limits in H and which resources can be shared as shown in Table 2
row 4. For example, in TRIPS, within a single DAG, 8 instruction-
slots share a single ALU (node in H), and across concurrent DAGs,
64 slots share a single ALU in TRIPS. In both cases, this node-
sharing leads to contention on the links as well.

Performance goal ! Formulate ILP objective: The performance
goals of an architecture generally fall into two categories: those
which are enforced by certain architectural limitations or abilities,
and those which can be influenced by the schedule. For instance,
both PLUG and DySER are throughput engines that try to perform
one computation per cycle, and any legal schedule will naturally
enforce this behavior. For this type of performance goal, the sched-
uler relies on the ILP constraints already present in the model. On
the other hand, the scheduler generally has control over multiple
quantities which can improve the performance. This often means
deciding between the conflicting goals of minimizing the latency of
individual blocks and managing the utilization among the available
hardware resources to avoid creating bottlenecks, which it manages
by prioritizing optimization quantities.

4. General ILP framework
This section presents our general ILP formulation in detail. Our
formal notation closely follows our ILP formulation in GAMS
instead of the more conventional notation often used for graphs in
literature. We represent the computation graph as a set of vertices
V , and a set of edges E. The computation DAG, represented by
the adjacency matrix G(V [E, V [E), explicitly represents edges
as the connections between vertices. For example, for some v 2 V
and e 2 E, G(v, e) = 1 means that edge e is an output edge
from vertex v. Likewise, G(e, v) = 1 signifies that e is an input to
vertex v. For convenience, lowercase letters represents elements of
the corresponding uppercase letters’ set.

We similarly represent the hardware graph as a set of hardware
computational resource nodes N , a set of routers R which serve as
intermediate points in the routing network, and a set of L unidi-
rectional links which connect the routers and resource nodes. The
graph which describes the network organization is given by the ad-
jacency matrix H(N[R[L,N[R[L). To clarify, for some l 2 L
and n 2 N , if the parameter H(l, n) was 0, link l would not be an
input of node n. Hardware graphs are allowed to take any shape,
and typically do contain cycles. Terms vertex/edge refer to mem-
bers in G, and node/link to members in H .

Some of the vertices and nodes represent not only computation,
but also inputs and outputs. To accommodate this, vertices and
nodes are “typed” by the operations they can perform, which also
enables the support of general heterogeneity in the architecture.
For the treatment here, we abstract the details of the “types” into
a compatibility matrix C(V,N), indicating whether a particular
vertex is compatible with a particular node. When equations depend
on specific types of vertices, we will refer this set as Vtype.

Figure 1 shows an example G graph, representing the compu-
tation z = (x + y)2, and an H graph corresponding to a sim-
plified version of the DySER architecture. Here, triangles repre-

Inputs: Computation DAG Description (G)
V Set of computation vertices.
E Set of Edges representing data flow of vertices
G(V [E, V [E) The computation DAG
�(E) Delay between vertex activation and edge activation.
�(V) Duration of vertex.
�(E) (PLUG) Delay between vertex activation and edge reception.
Be Set of bundles which can be overlapped in network.
Bv (PLUG only) Set of mutually exclusive vertex bundles.
B(E[V,Be[Bv) Parameter for edge/vertex bundle membership.
P (TRIPS only) Set of control flow paths the computation can take
Av(P, V),
Ae(P,E) (TRIPS)

Activation matrices defining which vertices and
edges get activated by given path

Inputs: Hardware Graph Description (H)
N Set of hardware resource Nodes.
R Routers which form the network
L Set of unidirectional point-to-point hardware Links
H(N[R[L,
N[R[L)

Directed graph describing the Hardware

I(L,L) Link pairs incompatible with Dim. Order Routing.
Inputs: Relationship between G/H

C(V,N) Vertex-Node Compatibility Matrix
MAXN ,MAXL Maximum degree of mapping for nodes and links.

Variables: Final Outputs
Mvn(V,N) Mapping of computation vertices to hardware nodes.
Mel(E,L) Mapping of edges to paths of hardware links
Mbl(Be, L) Mapping of edge bundles to links
Mbn(Bv , N)
(PLUG only)

Mapping of vertex bundles to nodes

�(E) (PLUG) Padding cycles before message sent.
�(E) (PLUG) Padding cycles before message received.

Variables: Intermediates
O(L) The order a link is traversed in.
U(L[N) Utilization of links and nodes.
Up(P) (TRIPS) Max Utilization for each path P .
T (V) Time when a vertex is activated
X(E) Extra cycles message is buffered.
�(b, e) (PLUG) Cycle when e is activated for bundle b
LAT Total latency for scheduled computation
SV C Service interval for computation.
MIS Largest Latency Mismatch.

Table 3. Summary of formal notation used.

sent input/output nodes and vertices, and circles represent compu-
tation nodes and vertices. Squares represent elements of R, which
are routers composing the communication network. Elements of E
are shown as unidirectional arrows in the computation DAG, and
elements of L as bidirectional arrows in H representing two unidi-
rectional links in either direction.

The scheduler’s job is to use the description of the typed com-
putation DAG and hardware graph to find a mapping from com-
putation vertices to computation resource nodes and determine the
hardware paths along which individual edges flow. Figure 1 also
shows a correct mapping of the computation graph to the hardware
graph. This mapping is defined by a series of constraints and vari-
ables described in the remainder of this Section, and these variables
and scheduler inputs are summarized in Table 3.

We now describe the ILP constraints which pertain to each
scheduler responsibility, then show a diagram capturing this re-
sponsibility pictorially for our running example in Figure 1.

Responsibility 1: Placement of computation.
The first responsibility of the scheduler is to map vertices from
the computation DAG to nodes from the hardware graph. For-
mally, the scheduler must compute a mapping from V to N , which
we represent with the matrix of binary variables Mvn(V,N).
If Mvn(v, n) = 1, then vertex v is mapped to node n, while

498

Constraint-based programming 
for spatial architectures
[Nowatzki et al., PLDI 2013]

 כ

DAG G for
z=(x+y)2

Graph H for hardware of
spatial architecture

A Mapping of G to H

 כ +
x

y

z

y x

+

z

edges
(E)

vertices
(V) routers (R)

nodes (N) links (L)

Figure 1. Example of computation G mapped to hardware H .

limits in H and which resources can be shared as shown in Table 2
row 4. For example, in TRIPS, within a single DAG, 8 instruction-
slots share a single ALU (node in H), and across concurrent DAGs,
64 slots share a single ALU in TRIPS. In both cases, this node-
sharing leads to contention on the links as well.

Performance goal ! Formulate ILP objective: The performance
goals of an architecture generally fall into two categories: those
which are enforced by certain architectural limitations or abilities,
and those which can be influenced by the schedule. For instance,
both PLUG and DySER are throughput engines that try to perform
one computation per cycle, and any legal schedule will naturally
enforce this behavior. For this type of performance goal, the sched-
uler relies on the ILP constraints already present in the model. On
the other hand, the scheduler generally has control over multiple
quantities which can improve the performance. This often means
deciding between the conflicting goals of minimizing the latency of
individual blocks and managing the utilization among the available
hardware resources to avoid creating bottlenecks, which it manages
by prioritizing optimization quantities.

4. General ILP framework
This section presents our general ILP formulation in detail. Our
formal notation closely follows our ILP formulation in GAMS
instead of the more conventional notation often used for graphs in
literature. We represent the computation graph as a set of vertices
V , and a set of edges E. The computation DAG, represented by
the adjacency matrix G(V [E, V [E), explicitly represents edges
as the connections between vertices. For example, for some v 2 V
and e 2 E, G(v, e) = 1 means that edge e is an output edge
from vertex v. Likewise, G(e, v) = 1 signifies that e is an input to
vertex v. For convenience, lowercase letters represents elements of
the corresponding uppercase letters’ set.

We similarly represent the hardware graph as a set of hardware
computational resource nodes N , a set of routers R which serve as
intermediate points in the routing network, and a set of L unidi-
rectional links which connect the routers and resource nodes. The
graph which describes the network organization is given by the ad-
jacency matrix H(N[R[L,N[R[L). To clarify, for some l 2 L
and n 2 N , if the parameter H(l, n) was 0, link l would not be an
input of node n. Hardware graphs are allowed to take any shape,
and typically do contain cycles. Terms vertex/edge refer to mem-
bers in G, and node/link to members in H .

Some of the vertices and nodes represent not only computation,
but also inputs and outputs. To accommodate this, vertices and
nodes are “typed” by the operations they can perform, which also
enables the support of general heterogeneity in the architecture.
For the treatment here, we abstract the details of the “types” into
a compatibility matrix C(V,N), indicating whether a particular
vertex is compatible with a particular node. When equations depend
on specific types of vertices, we will refer this set as Vtype.

Figure 1 shows an example G graph, representing the compu-
tation z = (x + y)2, and an H graph corresponding to a sim-
plified version of the DySER architecture. Here, triangles repre-

Inputs: Computation DAG Description (G)
V Set of computation vertices.
E Set of Edges representing data flow of vertices
G(V [E, V [E) The computation DAG
�(E) Delay between vertex activation and edge activation.
�(V) Duration of vertex.
�(E) (PLUG) Delay between vertex activation and edge reception.
Be Set of bundles which can be overlapped in network.
Bv (PLUG only) Set of mutually exclusive vertex bundles.
B(E[V,Be[Bv) Parameter for edge/vertex bundle membership.
P (TRIPS only) Set of control flow paths the computation can take
Av(P, V),
Ae(P,E) (TRIPS)

Activation matrices defining which vertices and
edges get activated by given path

Inputs: Hardware Graph Description (H)
N Set of hardware resource Nodes.
R Routers which form the network
L Set of unidirectional point-to-point hardware Links
H(N[R[L,
N[R[L)

Directed graph describing the Hardware

I(L,L) Link pairs incompatible with Dim. Order Routing.
Inputs: Relationship between G/H

C(V,N) Vertex-Node Compatibility Matrix
MAXN ,MAXL Maximum degree of mapping for nodes and links.

Variables: Final Outputs
Mvn(V,N) Mapping of computation vertices to hardware nodes.
Mel(E,L) Mapping of edges to paths of hardware links
Mbl(Be, L) Mapping of edge bundles to links
Mbn(Bv , N)
(PLUG only)

Mapping of vertex bundles to nodes

�(E) (PLUG) Padding cycles before message sent.
�(E) (PLUG) Padding cycles before message received.

Variables: Intermediates
O(L) The order a link is traversed in.
U(L[N) Utilization of links and nodes.
Up(P) (TRIPS) Max Utilization for each path P .
T (V) Time when a vertex is activated
X(E) Extra cycles message is buffered.
�(b, e) (PLUG) Cycle when e is activated for bundle b
LAT Total latency for scheduled computation
SV C Service interval for computation.
MIS Largest Latency Mismatch.

Table 3. Summary of formal notation used.

sent input/output nodes and vertices, and circles represent compu-
tation nodes and vertices. Squares represent elements of R, which
are routers composing the communication network. Elements of E
are shown as unidirectional arrows in the computation DAG, and
elements of L as bidirectional arrows in H representing two unidi-
rectional links in either direction.

The scheduler’s job is to use the description of the typed com-
putation DAG and hardware graph to find a mapping from com-
putation vertices to computation resource nodes and determine the
hardware paths along which individual edges flow. Figure 1 also
shows a correct mapping of the computation graph to the hardware
graph. This mapping is defined by a series of constraints and vari-
ables described in the remainder of this Section, and these variables
and scheduler inputs are summarized in Table 3.

We now describe the ILP constraints which pertain to each
scheduler responsibility, then show a diagram capturing this re-
sponsibility pictorially for our running example in Figure 1.

Responsibility 1: Placement of computation.
The first responsibility of the scheduler is to map vertices from
the computation DAG to nodes from the hardware graph. For-
mally, the scheduler must compute a mapping from V to N , which
we represent with the matrix of binary variables Mvn(V,N).
If Mvn(v, n) = 1, then vertex v is mapped to node n, while

498

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

✓✗

int a = ...;

int p = ...;

@Approx

p = a;

a = p;

EnerJ type qualifiers
[PLDI 2011]

int a = ...;

int p = ...;

@Approx

EnerJ type qualifiers
[PLDI 2011]

Let’s insert these
automatically!

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

No more generic unsound
compiler transformations.

Loop perforation
[Sidiroglou-Douskos et al., FSE 2011]

for (int i = 0; i < max; i++) {
 // whatever
}

i += 2

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

No more generic unsound
compiler transformations.

No more weak statistical guarantees.

8x f(x) is good

Traditional guarantee

Statistical guarantee

Pr [f(x) is good] � T

Statistical guarantee,
in reality

Prx⇠D [f(x) is good] � T

anticipated input distribution

x

pr
ob

ab
ilit

y

x

pr
ob

ab
ilit

y high quality

low
quality

x

pr
ob

ab
ilit

y

x

pr
ob

ab
ilit

y

Adversarial distribution

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

No more generic unsound
compiler transformations.

No more weak statistical guarantees. No more sadness about the
imperfection of quality metrics.

Lines Proportion Total Annotated Endorse-
Application Description Error metric of code FP decls. decls. ments
FFT

Scientific kernels from the
SciMark2 benchmark

Mean entry difference 168 38.2% 85 33% 2
SOR Mean entry difference 36 55.2% 28 25% 0
MonteCarlo Normalized difference 59 22.9% 15 20% 1
SparseMatMult Mean normalized difference 38 39.7% 29 14% 0
LU Mean entry difference 283 31.4% 150 23% 3

ZXing Smartphone bar code decoder 1 if incorrect, 0 if correct 26171 1.7% 11506 4% 247
jMonkeyEngine Mobile/desktop game engine Fraction of correct decisions

normalized to 0.5
5962 44.3% 2104 19% 63

ImageJ Raster image manipulation Mean pixel difference 156 0.0% 118 34% 18
Raytracer 3D image renderer Mean pixel difference 174 68.4% 92 33% 10

Table 3. Applications used in our evaluation, application-specific metrics for quality of service, and metrics of annotation density. “Proportion
FP” indicates the percentage of dynamic arithmetic instructions observed that were floating-point (as opposed to integer) operations.

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

ap
pr

ox
im

at
e

DRAM storage
SRAM storage

Integer operations
FP operations

FFT
SOR

Mon
teC

arl
o

SMM LU
ZXing jM

E
Im

ag
eJ

Ray
tra

cer

Figure 3. Proportion of approximate storage and computation in
each benchmark. For storage (SRAM and DRAM) measurements,
the bars show the fraction of byte-seconds used in storing approxi-
mate data. For functional unit operations, we show the fraction of
dynamic operations that were executed approximately.

Three of the authors ported the applications used in our eval-
uation. In every case, we were unfamiliar with the codebase be-
forehand, so our annotations did not depend on extensive domain
knowledge. The annotations were not labor intensive.

QoS metrics. For each application, we measure the degradation
in output quality of approximate executions with respect to the
precise executions. To do so, we define application-specific quality
of service (QoS) metrics. Defining our own ad-hoc QoS metrics
is necessary to compare output degradation across applications. A
number of similar studies of application-level tolerance to transient
faults have also taken this approach [3, 8, 19, 21, 25, 35]. The third
column in Table 3 shows our metric for each application.

Output error ranges from 0 (indicating output identical to the
precise version) to 1 (indicating completely meaningless output). For
applications that produce lists of numbers (e.g., SparseMatMult’s
output matrix), we compute the error as the mean entry-wise
difference between the pristine output and the degraded output. Each
numerical difference is limited by 1, so if an entry in the output is
NaN, that entry contributes an error of 1. For benchmarks where the
output is not numeric (i.e., ZXing, which outputs a string), the error
is 0 when the output is correct and 1 otherwise.

6.1 Energy Savings
Figure 3 divides the execution of each benchmark into DRAM
storage, SRAM storage, integer operations, and FP operations and

no
rm

al
iz

ed
to

ta
le

ne
rg

y

0%

20%

40%

60%

80%

100%
DRAM SRAM Integer FP

B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3

FFT
SOR

Mon
teC

arl
o

SMM LU
ZXing jM

E

Im
ag

eJ

Ray
tra

cer

Figure 4. Estimated CPU/memory system energy consumed for
each benchmark. The bar labeled “B” represents the baseline
value: the energy consumption for the program running without
approximation. The numbered bars correspond to the Mild, Medium,
and Aggressive configurations in Table 2.

shows what fraction of each was approximated. For many of the
FP-centric applications we simulated, including the jMonkeyEngine
and Raytracer as well as most of the SciMark applications, nearly
all of the floating point operations were approximate. This reflects
the inherent imprecision of FP representations; many FP-dominated
algorithms are inherently resilient to rounding effects. The same
applications typically exhibit very little or no approximate integer
operations. The frequency of loop induction variable increments
and other precise control-flow code limits our ability to approximate
integer computation. ImageJ is the only exception with a significant
fraction of integer approximation; this is because it uses integers to
represent pixel values, which are amenable to approximation.

DRAM and SRAM approximation is measured in byte-seconds.
The data shows that both storage types are frequently used in
approximate mode. Many applications have DRAM approximation
rates of 80% or higher; it is common to store large data structures
(often arrays) that can tolerate approximation. MonteCarlo and
jMonkeyEngine, in contrast, have very little approximate DRAM
data; this is because both applications keep their principal data in
local variables (i.e., on the stack).

The results depicted assume approximation at the granularity
of a 64-byte cache line. As Section 4.1 discusses, this reduces the
number of object fields that can be stored approximately. The impact
of this constraint on our results is small, in part because much of
the approximate data is in large arrays. Finer-grain approximate
memory could yield a higher proportion of approximate storage.

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

No more generic unsound
compiler transformations.

No more weak statistical guarantees. No more sadness about the
imperfection of quality metrics.

No more benchmark-oriented research?

Lines Proportion Total Annotated Endorse-
Application Description Error metric of code FP decls. decls. ments
FFT

Scientific kernels from the
SciMark2 benchmark

Mean entry difference 168 38.2% 85 33% 2
SOR Mean entry difference 36 55.2% 28 25% 0
MonteCarlo Normalized difference 59 22.9% 15 20% 1
SparseMatMult Mean normalized difference 38 39.7% 29 14% 0
LU Mean entry difference 283 31.4% 150 23% 3

ZXing Smartphone bar code decoder 1 if incorrect, 0 if correct 26171 1.7% 11506 4% 247
jMonkeyEngine Mobile/desktop game engine Fraction of correct decisions

normalized to 0.5
5962 44.3% 2104 19% 63

ImageJ Raster image manipulation Mean pixel difference 156 0.0% 118 34% 18
Raytracer 3D image renderer Mean pixel difference 174 68.4% 92 33% 10

Table 3. Applications used in our evaluation, application-specific metrics for quality of service, and metrics of annotation density. “Proportion
FP” indicates the percentage of dynamic arithmetic instructions observed that were floating-point (as opposed to integer) operations.

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

ap
pr

ox
im

at
e

DRAM storage
SRAM storage

Integer operations
FP operations

FFT
SOR

Mon
teC

arl
o

SMM LU
ZXing jM

E
Im

ag
eJ

Ray
tra

cer

Figure 3. Proportion of approximate storage and computation in
each benchmark. For storage (SRAM and DRAM) measurements,
the bars show the fraction of byte-seconds used in storing approxi-
mate data. For functional unit operations, we show the fraction of
dynamic operations that were executed approximately.

Three of the authors ported the applications used in our eval-
uation. In every case, we were unfamiliar with the codebase be-
forehand, so our annotations did not depend on extensive domain
knowledge. The annotations were not labor intensive.

QoS metrics. For each application, we measure the degradation
in output quality of approximate executions with respect to the
precise executions. To do so, we define application-specific quality
of service (QoS) metrics. Defining our own ad-hoc QoS metrics
is necessary to compare output degradation across applications. A
number of similar studies of application-level tolerance to transient
faults have also taken this approach [3, 8, 19, 21, 25, 35]. The third
column in Table 3 shows our metric for each application.

Output error ranges from 0 (indicating output identical to the
precise version) to 1 (indicating completely meaningless output). For
applications that produce lists of numbers (e.g., SparseMatMult’s
output matrix), we compute the error as the mean entry-wise
difference between the pristine output and the degraded output. Each
numerical difference is limited by 1, so if an entry in the output is
NaN, that entry contributes an error of 1. For benchmarks where the
output is not numeric (i.e., ZXing, which outputs a string), the error
is 0 when the output is correct and 1 otherwise.

6.1 Energy Savings
Figure 3 divides the execution of each benchmark into DRAM
storage, SRAM storage, integer operations, and FP operations and

no
rm

al
iz

ed
to

ta
le

ne
rg

y

0%

20%

40%

60%

80%

100%
DRAM SRAM Integer FP

B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3 B 1 2 3

FFT
SOR

Mon
teC

arl
o

SMM LU
ZXing jM

E

Im
ag

eJ

Ray
tra

cer

Figure 4. Estimated CPU/memory system energy consumed for
each benchmark. The bar labeled “B” represents the baseline
value: the energy consumption for the program running without
approximation. The numbered bars correspond to the Mild, Medium,
and Aggressive configurations in Table 2.

shows what fraction of each was approximated. For many of the
FP-centric applications we simulated, including the jMonkeyEngine
and Raytracer as well as most of the SciMark applications, nearly
all of the floating point operations were approximate. This reflects
the inherent imprecision of FP representations; many FP-dominated
algorithms are inherently resilient to rounding effects. The same
applications typically exhibit very little or no approximate integer
operations. The frequency of loop induction variable increments
and other precise control-flow code limits our ability to approximate
integer computation. ImageJ is the only exception with a significant
fraction of integer approximation; this is because it uses integers to
represent pixel values, which are amenable to approximation.

DRAM and SRAM approximation is measured in byte-seconds.
The data shows that both storage types are frequently used in
approximate mode. Many applications have DRAM approximation
rates of 80% or higher; it is common to store large data structures
(often arrays) that can tolerate approximation. MonteCarlo and
jMonkeyEngine, in contrast, have very little approximate DRAM
data; this is because both applications keep their principal data in
local variables (i.e., on the stack).

The results depicted assume approximation at the granularity
of a 64-byte cache line. As Section 4.1 discusses, this reduces the
number of object fields that can be stored approximately. The impact
of this constraint on our results is small, in part because much of
the approximate data is in large arrays. Finer-grain approximate
memory could yield a higher proportion of approximate storage.

https://arxiv.org/abs/1409.0575

W
in

ni
ng

 C
la

ss
ifi

ca
tio

n
To

p-
1

Er
ro

r

0%

5%

10%

15%

20%

25%

30%

2010 2011 2012 2013 2014 2015 2016

ImageNet annual competition

https://youtu.be/-gQMulb6T2o

Real-time graphics

Hardware Programming

Quality Domains

No more approximate functional units.

No more voltage overscaling.

In general, no more fine-grained
approximate operations.

No more automatic
approximability analysis.

No more generic unsound
compiler transformations.

No more weak statistical guarantees. No more sadness about the
imperfection of quality metrics.

No more benchmark-oriented research?

Notes and links:
http://www.cs.cornell.edu/~asampson/blog/closedproblems.html

