
CRAP: Collecting Resources Across different Processing levels

Samuel Thomas∗, Jiwon Choe∗, Ofir Gordon†, Erez Petrank†, Tali Moreshet‡, Maurice Herlihy∗, and R. Iris Bahar††
∗Brown University, †Technion-Israel Institute of Technology, ‡Boston University, ††Colorado School of Mines

1. Introduction

Near-memory processing (NMP) has demonstrated
promising properties to accelerate applications in several
domains [13] including graph traversing/pointer-chasing ap-
plications [1], [8], [7], [12], [14], [6], [9]. They benefit
from the fact that pointer-chasing applications tend to follow
pointers to random locations in memory and exhibit poor
cache locality as a result. Instead, by using NMPs, the same
computation can be performed without polluting the cache
with pointers that will not be reused. This frees the host
processor and caches from wasteful operations to perform
more computationally efficient routines in the algorithm.
While this direction is promising, existing work focuses on
the data structure granularity.

In this work, we extend these themes to garbage col-
lection – a much larger application with added complexi-
ties. Garbage collection is a tool provided by many high
level programming languages that automatically frees dead
objects in memory to ease the languages programmability
for the user and help reduce memory leakage and memory
corruption errors. We focus on garbage collection in Java.

Previous work has explored near-memory acceleration
of the Java garbage collector via high-bandwidth mem-
ory [10]. Instead, we focus on certain routines of the garbage
collection algorithm that exhibit pointer-chasing behavior.
Garbage collection in Java is based on the mark-and-sweep
algorithm. Briefly described, let roots denote all pointers
directly reachable by program threads. The marking phase
starts by pushing all root pointers to a “mark-stack.” Next,
an iterative process of handling the mark stack is executed
until the mark-stack is empty. In each iteration, a pointer is
popped from the mark-stack, the referent object is scanned,
and it is marked as live. If not previously marked, then it
gets pushed into the mark-stack. Once the stack is empty,
the heap is swept clean of all objects that have not been
marked.

Following pointers to random locations in the heap dur-
ing the marking phase exhibits similar properties to graph-
traversing problems. Given this, we propose utilizing NMP
to accelerate the marking phase of garbage collection in
Java. We modify the Java Developer Kit (JDK) to create a
customized worker process to perform the marking phase
of the garbage collection algorithm on NMP. Typically, the
JDK requests a specialized process be started to perform
the marking-phase. In our work, we propose that a similar
process is started instead of an NMP core to reduce L2
traffic. This worker process operates in parallel with the host
during garbage collection, so it is completely idle during
normal execution. This implies that a user can additionally
use the NMP to accelerate the application outside of garbage
collection, so our model is conservative.

Our goal was to improve garbage collections in all condi-
tions by utilizing NMP. Although our initial evaluation was
promising, emulating the behavior of long-running programs
didn’t show the same promise. We hope to use this submis-
sion to begin a discussion about the properties of short-
lived applications that benefit from NMP and under what
circumstances they may extend to long-running applications.
Given this, we will discuss the following:

1) We show that our initial evaluation was promis-
ing. By performing the marking phase of Java’s
garbage collection near memory, benchmark per-
formance can be improved by 2x in short-lived
programs. However, long-running programs do not
see a significant improvement in performance from
our technique.

2) We provide insights into why behaviors are differ-
ent in long– and short-lived applications and why
hardware exclusive solutions don’t generalize.

2. Evaluation

To perform our evaluation, we use the h2 benchmark
from the DaCapo benchmark suite [3], a standard Java
garbage collection testing suite. Prior evaluation [5] of the
DaCapo suite has demonstrated that the h2 benchmark is
among the most memory intensive benchmarks in the suite
and is well suited for evaluating full collections. Our hard-
ware configurations can be viewed in Table 1.

Our initial evaluation was promising, and its results are
shown in Fig. 1a. Performance refers to running time in
milliseconds, so lower is better. The evaluation involved
modifying a single environment variable, generational heap
configuration, to show scalability and proved to be promis-
ing. The figure shows that the NMP configuration can
demonstrate up to a 2x improvement in performance.

We use different young and full heap sizes to show the
scalability of our technique. Garbage collection in Java is
inspired by the weak generational hypothesis, and young
generation heap size and full heap size are used to trigger
young and full collections. We perform our evaluation on
three variant young and old generational heap configurations
of the h2 benchmark: (1) default, (2) 250/50, (3) 250/100.
The first value refers to the overall heap size (young gen-
eration size plus old generation size) in megabytes and the
second number refers to the size of the young generation size
in megabytes. Default refers to the default configurations of
the JDK environment, which is 4GB and 256MB.

From an architectural perspective, the benefits in per-
formance can be described by cache behavior. Fig. 2 shows
that, although there are no significant differences in hit rates
through the cache hierarchy, the number of requests to the



Figure 1: Running time (y-axis) of the h2 benchmark under dif-
ferent heap size configurations (x-axis). (a) shows performance
without warm-up iterations and (b) shows performance with warm-
up iterations.

Figure 2: Number of requests for the L2 in each of the heap
configurations by architecture. Most requests occur in the first
warm-up iteration

L2 are 2.3x higher in the host-only configuration. That is,
we identify that 55% of L2 activity in the h2 benchmark
comes from the marking phase of garbage collection.

Our evaluation extends beyond the initial evaluation to
more accurately reflect the behavior of long-running appli-
cations with warm-up iterations. Fig. 3 shows the impact of
using warm-up iterations on performance with and without
NMP. In Java, modules and classes are loaded and compiled
dynamically at runtime to the virtual environment using just-
in time (JIT) compilation. As such, it is standard practice
to use these warm-up iterations to avoid measuring these
extraneous behaviors, as they are less common in the typical
use case of long running applications. The number of warm-
up iterations varies in prior work from one [4] to 20 [11].
The lack of communal uniformity in determining the number
of warm-up iterations to use is problematic for comprehen-
sive evaluation [15], so we use their “cookbook” approach
for a more up-to-date analysis of the DaCapo benchmarks,
because each iteration may take a few seconds to a few
minutes on a host machine. In our work, we use four warm-
up iterations.

Fig. 1b demonstrates the impact of warm-up iterations
on running time with the host only and NMP configurations
– lower is better. The figure shows that the difference in
performance between the host only and NMP configurations
is relatively insignificant. This result alone may not be
particularly exciting, but we can utilize it to give us a bigger
insight to the fundamental properties of Java programs from
an architecture perspective. We found that the cache hit
rates are consistent across each of the host only and NMP
configurations. The hit rate in the data cache was consis-
tently about 95% and the L2 hit rate was consistently about
50%, though some NMP configurations saw hit rates closer
to 60%. Instead, Fig. 2 demonstrates that the architectural

TABLE 1: Evaluation framework configuration.
Host Configuration

Host cores 1 in-of-order processors (gem5 [2] TimingSimpleCPU)
2GHz frequency, 1 thread/core

L1 cache 48kB icache, 32kB dcache, private
2-way set-associative LRU

L2 cache 1MB, shared, 8-way set associative LRU
NMP Core Configuration

NMP cores 1 in-order single-cycle processor/vault
(gem5 TimingSimpleCPU), 2GHz frequency

L1 cache 48kB icache, 32kB dcache, private
2-way set-associative LRU

Memory Configuration
2GB DRAM (gem5 DDR3 1600 3x3)
tRP : 13.75ns, tRCD : 13.75ns, tCL: 13.75ns, tBURST : 3.2ns

Figure 3: Running time in milliseconds versus number of warm-
up iterations of on the h2 benchmark in host only and NMP
configurations.

explanation for the difference in performance comes from
the fact that about 75% of L2 traffic occurs during the first
iteration of the benchmark with four warm-up iterations.

In summary, our analysis of the marking phase of
garbage collection on NMP demonstrated that 55% of L2
traffic in the first benchmark iteration results from the mark-
ing phase. As such, using NMP can give a 2x improvement
in performance under these circumstances. However, with
warm-up iterations there is little to no improvement in
performance. We found that about 75% of L2 traffic occurs
during the first iteration in our evaluation.

3. Discussion

We believe that a further understanding of the Java run-
time could lead to interesting insights into hardware-aware
modifications to the software. Furthermore, these insights
could be utilized to exploit the cases where NMP can benefit
garbage collection. This project led us to speculate about
the importance of evaluating short-lived applications. For
instance, are the properties of these benchmarks relevant
in long-running applications where modules are loaded dy-
namically over long periods of time? We hope that this work
can act as the beginning of this conversation, and that its
underlying themes can be relevant to future work in this
area.

We began this work interested in optimizing garbage
collection in Java with NMP because of the algorithmic
properties that these algorithms exhibit. However, we now
find ourselves with larger questions about Java in general.
Although our findings may not bear fruit for the integration
of new NMP-aware garbage collection algorithms, we firmly
believe that there is a place for NMP-awareness in the JDK.



References

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 105–117, 2015.

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH computer architecture news, 39(2):1–7, 2011.

[3] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M
Khang, Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z Guyer, et al. The dacapo bench-
marks: Java benchmarking development and analysis. In Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 169–190,
2006.

[4] Stephen M Blackburnα, Robin Garnerβ, Chris Hoffmannγ, Asjad M
Khanγ, Kathryn S McKinleyδ, Rotem Bentzurε, Amer Diwanζ,
Daniel Feinbergε, Daniel Framptonβ, Samuel Z Guyerη, et al. The
dacapo benchmarks: Java benchmarking development and analysis.
2006.

[5] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël
Thomas. A performance study of java garbage collectors on multicore
architectures. In Proceedings of the Sixth International Workshop on
Programming Models and Applications for Multicores and Many-
cores, pages 20–29, 2015.

[6] Jiwon Choe, Amy Huang, Tali Moreshet, Maurice Herlihy, and R Iris
Bahar. Concurrent data structures with near-data-processing: An
architecture-aware implementation. In The 31st ACM Symposium on
Parallelism in Algorithms and Architectures, pages 297–308, 2019.

[7] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon,
Hongsik Kim, and John Kim. Accelerating linked-list traversal
through near-data processing. In Proceedings of the 2016 Interna-
tional Conference on Parallel Architectures and Compilation, pages
113–124, 2016.

[8] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang,
Amirali Boroumand, Saugata Ghose, and Onur Mutlu. Accelerating
pointer chasing in 3d-stacked memory: Challenges, mechanisms,
evaluation. In 2016 IEEE 34th International Conference on Computer
Design (ICCD), pages 25–32. IEEE, 2016.

[9] Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei
Liao, Hai Jin, and Jingling Xue. A heterogeneous pim hardware-
software co-design for energy-efficient graph processing. In 2020
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 684–695. IEEE, 2020.

[10] Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim,
Sung Jun Jung, Hakbeom Jang, Tae Jun Ham, and Jae W Lee. Charon:
Specialized near-memory processing architecture for clearing dead
objects in memory. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 726–739, 2019.

[11] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. A comprehensive java benchmark study on mem-
ory and garbage collection behavior of dacapo, dacapo scala, and
specjvm2008. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, pages 3–14, 2017.

[12] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Con-
current data structures for near-memory computing. In Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 235–245, 2017.

[13] Paulo Cesar Santos, Francis Birck Moreira, Aline Santana Cordeiro,
Sairo Raonı́ Santos, Tiago Rodrigo Kepe, Luigi Carro, and Marco An-
tonio Zanata Alves. Survey on near-data processing: Applications and
architectures. Journal of Integrated Circuits and Systems, 16(2):1–17,
2021.

[14] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
Graphr: Accelerating graph processing using reram. In 2018 IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), pages 531–543. IEEE, 2018.

[15] Lisa Wu and Martha A Kim. Acceleration targets: A study of
popular benchmark suites. In The First Dark Silicon Workshop, DaSi,
volume 12, page 25. Citeseer, 2012.


