Too Noisy To Extract : Pitfalls of Model Extraction Attacks

Mujahid Al Rafi, Yuan Feng, Hyeran Jeon
University of California Merced
Email: {mrafi, yfeng44, hjeon7}@ucmerced.edu

Abstract—Deep learning solutions become one of the most
important intellectual properties of the solution providers. A
few studies raised the alarm about the leakage of important
model parameters through model extraction attacks. This
paper discusses the practicality of such attacks by exploring
the baseline assumptions of the existing attack scenarios.

1. Introduction

Recently, concerns are increasing about the hardware
attacks that exploit the side-channels formed by the unique
structure of micro-architectures. Various attack models have
been demonstrated that make the designers and vendors
revise their solutions to protect against any private and
secure information leakage. These side-channel attacks show
so-called the best case leakages. This means that valid
information can be leaked and recovered only when the
presumed conditions are all satisfied. Therefore, it is im-
portant to understand the baseline assumptions of each
attack model. For example, cache side-channel attacks such
as PRIME+PROBE assume that the attacker is aware of
the victim code structure as well as the cache configura-
tion. Without such information, the attack cannot be imple-
mented. In this paper, we would like to discuss the validness
of assumptions of deep learning model extraction attacks
and raise an open question if such attacks are practical or
just illusions.

2. Methodologies

We used DeepSniffer [1] framework released in a pub-
lic repository [2] to test model extractions. We evaluated
ResNet-50 and ResNet-101 models that are downloaded
from different sources: DeepSniffer [2], Google TensorFlow
Hub [3], [4], MXNet Repository [5], and NVIDIA NGC
Catalog [6]. We intentionally collected models designed for
different deep learning frameworks to understand the impact
of frameworks, such as Pytorch, TensorFlow, and MXNet.
We ran the experiments on a labtop that has an NVIDIA
GeForce GTX 1660Ti (Turing) GPU with CUDA v11.5.
While running the models, we collected three key archi-
tecture statistics, kernel execution time, kernel read volume,
and write volume via Nsight profiler. We also collected the
names of kernels to find the sources of statistical differences
among the models. We used a cat image as an inference
input for all models.

Kernels common to ALL:

gemv2T_kernel_val
im2col4d_kernel

Kernels unique to Amazon_Mxnet:

add_bias_kernel
bn_fw_inf_1C11_kernel_NCHW
computeWgradBOffsetsKernel
computelWgradSplitkoffsetsKernel
computeBOffsetsKernel
dgrad_algl_engine
dgrad2d_algl_1

dgrad_engine

gemmk1_kernel
mxnet_generic_kernel
nchwAddPaddingKernel
op_generic_tensor_kernel
pointwise_mult_and_sum_complex
softmax_stridel_compute_kernel
tscalePackedTensor_kernel
tensorTransformGeneric

turing_scudnn_128x64_stridedB...

uring_scudnn_128x32_stridedB...
volta_sgemm_32x128_nt
volta_sgemm_64x64_nt

volta_scudnn_128x64_stridedB_...

winogradwgradDatadx4
winogradWgradOutput4x4
winogradWgradDelta4x4
wgrad_algl_engine
wgrad_alge_engine

Kernels unique to DeepSniffer_PyTorch:

avg_pool2d_out_cuda_frame
bn_fw_tr_1C11_kernel_NCHW
bn_fw_tr_1C11_singleread
computeOffsetsKernel
explicit_convolve_sgemm
gemv2T_kernel_val
generateWinogradTilesKernel
im2col4d_kernel
implicit_convolve_sgemm
max_pool_forward_nchw
softmax_warp_forward
unrolled_elementwise_kernel
vectorized_elementwise_kernel
volta_scudnn_128x64_relu_inte...
volta_scudnn_128x64_relu_medi...
volta_scudnn_winograd_128x128...

Kernels unique to Google_Tensorflow:

AddV2_GPU_DT_FLOAT_DT_FLOAT k...
Mul_GPU_DT_FLOAT_DT_FLOAT ker...
Maximum_GPU_DT_FLOAT_DT_FLOAT...
Sub_GPU_DT_FLOAT_DT_FLOAT_ker. ..
Square_GPU_DT_FLOAT_DT_FLOAT_...
Rsqrt_GPU_DT_FLOAT_DT_FLOAT_k...
BlockReduceKernel

BiasNHWCKernel

EigenMetaKernel

gemvNSP_kernel
volta_sgemm_128x32_nn
volta_sgemm_32x32_sliced1x4_nn

Figure 1: Common and Unique Kernels used by ResNet-101
models Designed for Different Frameworks

3. Impact of Frameworks and Vendor-Specific
Optimization

With the rising impact of deep learning, the deep learn-
ing model performance is one of the most important fac-
tors that determine the market revenue of machine learn-
ing solution vendors. Thus, the model topology and the
core hyperparameters need to be protected as propriety
intellectual properties. Recent a few studies demonstrated
that it is feasible to steal deep learning model topology,
hyperparameter, and training dataset [1], [7], [8]. These
attack models, namely model extraction attack, member-
ship inference attack, and hyperparmeter stealing attack
leverage side channels through performance counters, cache
access timings, and bus probing. Most of these studies
exploited unique architectural behaviors of each layer com-
putation to recognize the number and types of layers. For
example, DeepSniffer [1] used the execution time, memory
reads/writes, and input dependencies of individual kernels
(GPU functions) for extracting convolutional neural net-
work (CNN) models. In such attack models, the baseline
assumption is that the attacker does not have any knowledge
about the model structure, but can measure the architecture
activities and is aware that each layer is executed with a set
of statically scheduled GPU kernels.

Deepsniffer vs. Groundtruth

conv barelu pooling conv bn relu conv-# relu conv bn conv bn add relu conv bn relu conv bn relu
conv bn add relu conv bn relu conv bn relu conv bn add relu conv bn relu conv bn relu conv bn conv

bn add relu conv bn relu conv bn relu conv bn add relu conv bn relu conv bn relu conv bn add relu

conv bn relu conv bn relu conv bn add relu conv bn relu cenv bn relu conv bn conv bn add relu conv

bn relu conv bn relu conv bn add relu conv bn relu conv bn relu conv bn add relu conv bn relu conv

bn relu conv bn add relu conv bn relu conv bn relu conv bn add relu conv bn relu conv bn relu conv

bn add relu conv bn relu conv bn relu conv bn add relu conv bn relu conv bn relu conv bn add relu

conv bn relu conv bn relu conv bn add-relu conv bn relu conv bn relu conv bn add-relu conv bn relu
han ral hin add ral b ral b ral hin add ral hin ral bin ral

Google TensorFlow vs. Groundtruth

eonv-brrrelu peating-conv bn relu conv b conv b relu conv bn relu conv bn relu conv
bn relu conv bn relu conv bn canv bn add relu conv bn relu canv bn relu conv bn conv bn

add relu conv bn relu conv bn relu eonv bn relu conv b relu conv bn relu conv bn relu

conv bn add relu conv bn relu conv bn conv bn relu canv bn relu conv bn relu conv bn

relu conv bn relu conv bn relu conv bn relu conv bn conv bn add relu conv bn relu conw

bn relu conv bn add-rek rbarel rbaral bradd & " o
3 vba-add el br-ral b E baaddrel +barel

«brrel baadd rel bareh ba-reh a-add-relu conv bn relu

conu hn relu ronu hn ade rali cony hn rali canw bn relis cony hn adedrali cony hn relin

Figure 2: Layer Prediction Errors for ResNet-101 Models

However, we observed that the existing studies over-
looked the impact of framework and vendor-specific opti-
mizations. Though most of the deep learning solutions use
common libraries such as cuDNN, Winograd, cuBLAS, and
so on, the choice of functions is quite diverse in different
versions of the same models as can be seen in Figure 1. The
figure shows the list of GPU kernels executed commonly
and uniquely by three versions of ResNet-101 models.
Though all the models were evaluated on the same machine
with the same CUDA version, the models used only two
common kernels. Such differences are sourced from their
preference for algorithms. For example, MXNet models use
more Winograd algorithms, TensorFlow models tend to use
their GPU backends, and PyTorch models use more cuDNN
library functions. Though the core algorithms of these func-
tions may be similar, the different implementations and data
formats lead to significantly different architectural behaviors
as can be seen in Figure 3. From this figure that shows
the execution time and memory reads/writes of the first 20
kernels, we could not observe common patterns across the
frameworks. DeepSniffer also reported a similar observation
that individual kernel-level recognition performance is not
good enough. They used data dependencies among kernels
to improve the prediction accuracy. But, we found that some
frameworks especially TensorFlow use a few small kernels
that do not write to memory. Many of these kernels seem
to be some sort of meta-functions that improve efficiencies
of the core functions’ computations through input transpose
and index rearrangement. With these functions that do not
have data outputs in the middle of executions, it would be
hard to track the data dependencies.

Though the existing studies optimistically(?) predicted
that framework difference may have an ignorable impact on
model extraction performance, we observed counter results.
Figure 2 shows significantly higher errors when applying
DeepSniffer attack model for a ResNet-101 downloaded
from Google TensorFlow Hub. Table 1 and Table 2 show
the error rates and the kernel execution differences of the
tested models. DeepSniffer works well with PyTorch mod-
els. However, it fails to extract models designed for different
frameworks. Even for the PyTorch solution, if vendors add
optimizations, the prediction accuracy drops significantly as
can be seen in the Nvidia PyTorch Model entry.

TensorFlow == MXNet == DeepSniffer PyTorch == NVIDIA PyTorch X-axis: Kernels in Execution Order

i 1 1 1
1200 7000 I 8000 1 ‘

| 5000 o 7900
1000, i o I] |
= I | £ | |
0 I < . I | 5 |
S ol ° i Il 2 |
= | S A | £ so00
§ | Sano \ [H |
E 600/ | € [[g0
5 I S000 &
o | £ 3000
Q o | [=] a |

2000 \ .
1 | | . 2000

wo o oa \l 1000
A YAVAIR W, oL VAV R . N

Figure 3: Profile Results of ResNet-50

These results show that attackers should either know the
framework and the existence of vendor-specific optimiza-
tions or train the attack model with profiling data of various
frameworks. This finding is good news for the solution
providers because the models do not need to be significantly
redesigned to protect from attacks. However, this doesn’t
mean that you are safe enough because it is not impossible
for attackers to understand the differences of the frameworks
and optimizations.

TABLE 1: Kernel Profiling & Layer Prediction Error Rates
of ResNet-101 Models Implemented with Different Frame-
works

Error Rate Kernel Seq. # of Unique
Models (LER) Length ¥ Kemelg
DeepSniffer Original Results [1] 0.067 443 16
DeepSnifter Pytorch Model [2] 0.485 494 16
Google Tensorflow Model [3] 5.733 3926 50
Amazon Mxnet Model [5] 2.988 3043 59

TABLE 2: Kernel Profiling & Layer Prediction Error Rates
of ResNet-50 Models Implemented with Different Frame-
works

Error Rate Kernel Seq. # of Unique
Models (LER) Length Kernels
DeepSniffer Original Results [1] 0.091 222 16
DeepSniffer Pytorch Model [2] 0.567 256 16
Nvidia PyTorch Model [6] 2.628 1235 38
Google Tensorflow Model [4] 6.274 3399 50
Amazon Mxnet Model [5] 6.768 2652 59
References

[1] X. H. et al., “DeepSniffer: A DNN Model Extraction Framework Based
on Learning Architectural Hints,” in ASPLOS, 2020.

[2] DeepSniffer ResNet Models. [Online]. Available:
https://github.com/xinghu7788/DeepSnifter/
[3] TensorFlow ResNet Models. [Online]. Available:

https://tthub.dev/google/imagenet/resnet_v1_101/classification/5

[4] TensorFlow ResNet Models. [Online]. Available:
https://tfhub.dev/google/imagenet/resnet_v2_50/classification/5

[5] MXNet ResNet Models. [Online].
Available: https://github.com/apache/incubator-
mxnet/blob/master/python/mxnet/gluon/model_zoo/vision/resnet.py

[6] NVIDIA ResNet v1.5 for PyTorch. [Online]. Available:
https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50
_v1_5_for_pytorch

[7] H. N. et al.,, “Rendered Insecure: GPU Side Channel Attacks are
Practical,” in CCS, 2018.

[8] M. Y. et al., “Cache Telepathy: Leveraging Shared Resource Attacks
to Learn DNN Architectures,” in USENIX Security, 2020.

