
Homomorphically Encrypted Computation using
Stochastic Encodings

Hsuan Hsiao†, Vincent Lee†, Brandon Reagen†‡, Armin Alaghi†
†Reality Labs Research, ‡New York University

{jhsiao,vtlee,reagen,alaghi}@fb.com,bjr5@nyu.edu

Abstract
Homomorphic encryption (HE) is a privacy-preserving tech-
nique that enables computation directly over ciphertext. Un-
fortunately, a key challenge for HE is that implementations
can be impractically slow and have limits on computation
that can be efficiently implemented. For instance, in Boolean
constructions of HE like TFHE, arithmetic operations need
to be decomposed into constituent elementary logic gates to
implement so performance depends on logical circuit depth.
For even heavily quantized fixed-point arithmetic operations,
these HE circuit implementations can be slow.
This paper explores the merit of using stochastic com-

puting (SC) encodings to reduce the logical depth required
for HE computation to enable more efficient implementa-
tions. Contrary to computation in the plaintext space where
many efficient hardware implementations are available, HE
provides support for only a limited number of primitive op-
erators and their performance may not directly correlate
to their plaintext performance. Our results show that by
layering SC encodings on top of TFHE, we observe similar
challenges and limitations that SC faces in the plaintext space.
Additional breakthroughs would require more support from
the HE libraries to make SC with HE a viable solution.

1 Introduction
Homomorphic encryption (HE) is a rapidly emerging
privacy-preserving technology that enables computation
directly over ciphertext. This means that a potentially un-
trusted third party can process data without ever observing
the plaintext contents. Unfortunately, one of the key chal-
lenges with HE is that it is orders of magnitude slower than
plaintext computation. This is because in HE any target com-
putation needs to be decomposed into elementary gates or a
limited set of arithmetic operations. Each operation in HE is
also orders of magnitude slower than the plaintext version;
to close the gap, HE requires optimizations from across the
computing stack to bring down to practical speeds.
Stochastic computing (SC) [3, 5] is a computing para-

digm that allows for simple and efficient implementations of
basic arithmetic operations such as multiplication and addi-
tion. Values are encoded as probabilistic bitstreams of unary
values as opposed to wide fixed-point or floating-point rep-
resentations. An 𝑛-bit binary number 𝑥 would be encoded as
a bitstream𝑋 of length 𝑁 = 2𝑛 to achieve the same precision
where 𝑃 (𝑋 = 1) = 𝑥/2𝑛 at each position in the bitstream.

Stochastic encodings (SE) typically require an overall higher
number of bits to represent a similar precision compared to
conventional binary encodings (BE); however, the low cir-
cuit complexity (i.e., size and logical depth) of its operators
and the predominantly bitwise computation style provides
flexibility and high parallelization potential.

Boolean HE. This work focuses on the Boolean construc-
tions of HE such as the TFHE variant [2] where bits of the
data are encrypted individually and computed at the bit level.
The performance of the HE computation then scales with the
complexity of the equivalent circuit required to implement
operations. For instance, to execute a 4-bit addition in TFHE,
we would decompose it into the elementary AND, OR, and
NOT logic gates to construct the circuit and execute each of
these in TFHE. Each gate must be executed in HE so the size
and logical depth of the equivalent circuit directly impacts
the run time performance of the HE computation.

Proposed SCHE. We propose applying stochastic encod-
ings and computing prior to encrypting data to reduce the
complexity of the circuit that must be implemented in HE,
which in turn reduces the computational cost. The high level
system definition and how data and computation are pro-
cessed are shown in Figure 1.
There are a few reasons why this SCHE system may be

desirable. The logical depth of arithmetic circuits for binary-
encoded data typically scales with the input precision (i.e.,
𝑂 (𝑛)), whereas SC circuits typically have a constant logi-
cal depth (i.e., 𝑂 (1)). Intuitively, applying SE to HE should
simplify the computation and reduce overall latency. Ad-
ditionally, SC requires more bits to pass through the same
circuit compared to BE computation, which requires fewer
bits to pass through a more diverse circuit. This characteris-
tic, along with SC’s potential for high parallelism, allows SC
to take better advantage of executing in a Single Instruction
Multiple Data (SIMD) fashion than BE computation. Given
the benefits brought about by SE and the fact that HE com-
putation brings different cost metrics as opposed to plaintext
computation, accelerating HE computation with a switch in
data encoding could be potentially promising. Additionally,
any new insights we can gather about SE and SC operating
in different underlying conditions than traditional hardware
assumptions can be valuable to the research community.



Hsuan Hsiao†, Vincent Lee†, Brandon Reagen†‡, Armin Alaghi†

x y

1000_11000110_1111

D/S

????_????

S/D

HE Encrypted Computation

0000_1100

zRNG RNG

D/S

????_???? ????_????

Encryption

Bitstream 
Representation

Conversion to 
Stochastic

Input Binary 
Values

Encrypted 
Bitstreams

????_????

Decryption

Output Binary 
Result

Conversion to 
Binary

Bitstream 
Representation

Homomorphic 
Encryption

Plaintext 
Stochastic

Plaintext 
Binary

Figure 1. Our proposed SCHE system which layers SE on top of HE to reduce the complexity of HE computation. Plaintext
values are compared against a random number generator (RNG) by a digital-to-stochastic (D/S) converter. The resulting
bitstream is then encrypted to HE and processed. By encoding values in SE, the size and logical depth of HE computation is
reduced. The resulting encrypted bitstream is decrypted and converted to a digital value using a stochastic-to-digital (S/D)
converter.

2 Methodology
We built our SCHE system on top of the Palisade library
implementation of TFHE [1] using 128-bit for the security
parameter; our experiments are run on a 2.3GHz 8-Core Intel
Core i9 processor with 32GB of 2667MHz DDR4 memory. We
evaluate and compare the performance difference between
SC and conventional BE arithmetic by implementing both
styles of circuits for multiply and add, which are the two
main operations in HE.
Since the performance difference between using SE and

BE is impacted directly by the gate-level implementation of
the computation, we evaluate the upper bound on potential
savings by selecting naive implementations for BE and the
most performant implementations for SE. We implement BE
multiplication as an array multiplier, which consists of 6𝑛2
gates and has a logical depth of 8𝑛 gates for 𝑛-bit inputs. For
SC multiplication, we assume an AND-gate multiplier, which
computes the product by bitwise AND-ing two bitstreams
and has a logical depth of 1 gate. For addition in BE, we
assume it is performed with a ripple-carry adder, which
consists of 5𝑛 gates with a logical depth of 3𝑛 gates. In SE,
the most performant version comes in the form of scaled
addition (e.g., (𝑎 + 𝑏)/2), and is achieved by combining half
the bits of bitstream 𝑎 and half the bits of bitstream 𝑏.

3 Evaluation
To explore the merits and limitations of SCHE, we evaluate
the performance, accuracy, and the impact of SIMD paral-
lelization. In the Palisade library, all 2-input gates have the
same performance of roughly 600𝑚𝑠 , and the NOT gate has
negligible run time. Bootstrapping [4] is performed after
each 2-input gate and accounts for most of the gate’s exe-
cution time. Since the performance of all gates are equal,

Figure 2. Performance vs. RMSE of array multiplier and SC
multiplier at different precision (data labels).

the total compute time required for an application translates
directly to the number of gate computations.
Total computation time. Figure 2 compares the perfor-
mance of SE and BE multiplication assuming no paralleliza-
tion (i.e., single-threaded). We plot the total runtime against
the root mean square error (RMSE) at each precision, with
respect to floating-point multiplication. The total computa-
tion time for 𝑛-bit precision is on the order of 𝑛2 for binary
vs. 2𝑛 for SC. If the required computation precision is 8 bits
or below (i.e., below the red dashed line in Figure 2), using
SE provides performance benefit. However, because of SC’s
approximate nature, comparing performance at the same
precision may be inadequate if we need to meet a specific
accuracy constraint. As an example indicated by the green
dashed line in Figure 2, we may need to consider 5-bits of
precision in SE to achieve similar accuracy as 3-bits in BE.We
plot SC ideal in gray to show the best performance-accuracy
tradeoff achievable by SC, if we can eliminate correlation
and fluctuation errors and the computation is only affected
by quantization error.
Latency. If the required computation precision is above
8 bits, SE can still offer performance gains in the form of



SCHE

Figure 3. Latency speedup of SC AND multiplier over array
multiplier at different precisions. Each line represents a dif-
ferent precision 𝑛 used.

computation latency, depending on the workload and the
underlying hardware’s capabilities. Since an SC multiply
is able to be massively parallelized and has shallow circuit
depth, if the underlying hardware has enough execution
units (e.g., threads, processing elements, etc.), it can finish
computation in 600𝑚𝑠 as opposed to (𝑛×1200)𝑚𝑠 where 𝑛 is
the input precision. Figure 3 shows the analytical speedup of
SCHE over BE multiplication at different precisions and for
different numbers of multiplications in the workload using
64 parallel threads (assuming no parallelization overhead).
The results show that SCHE can provide some gains over BE
for special cases where the workload is not large enough for
the BE multiply to fully utilize all the execution units.
Accuracy tradeoff. Since SE provides performance bene-
fits mostly at low precision and incurs some accuracy loss,
we evaluate whether the computation accuracy achieved
is sufficient for a classification application. We implement
the inference of a classifier that is built with linear regres-
sion and thresholding. The weight and bias of the model is
trained using a floating-point representation; the floating-
point baseline inference achieves an 𝑅2 score of 0.81. To com-
pare against SC at different precisions, we quantize themodel
to evaluate the BE accuracy. Figure 4 shows the 𝑅2 score of
the classifier built with SC and compares it to the quantized
BE model. The results show the prediction accuracy is much
worse than the BE baseline even at high precision; as a result,
we conclude that the performance-accuracy tradeoff of using
SE is not worth it.
SIMD execution. With SE, more opportunities exist for
packing and fully utilizing the vector slots of each SIMD exe-
cution. Different bits from a bitstream can trivially be packed
into the same vector, and bits from different bitstreams des-
tined for the same operation can be packed into the same
vector; this precludes the need for realigning bits in the vec-
tors between operations. In contrast, in BE computation bits
from the same value cannot easily be packed into the same
vector due to data dependencies. It is possible to predefine a
data-layout of which bits can be packed into the same vector
based on the schedule of readiness for each gate’s input; how-
ever, this requires overhead to unpack and realign data for

Figure 4. Classification accuracy of SC and BE inference as
data precision varies. The baseline floating-point classifica-
tion accuracy is 0.81.

Figure 5. Speedup of SC multiply over BE array multiply for
a SIMD vector length of 8192 at different bit precisions𝑛. The
x-axis represents the number of independent multiplications
that an application needs to perform.

subsequent computation. To avoid the overhead associated
with unpacking and realignment, we can use 𝑛 vectors of
size𝑚 to represent𝑚 𝑛-bit numbers where each vector slot
is assigned to one bit of a different number. However, this
scheme’s vector utilization is directly tied to the workload
size and can significantly impact performance when there
are limited number of inputs to process. Figure 5 shows the
speedup of using SC multiply over BE array multiply for a
SIMD vector length of 8192. For a given workload, an in-
crease in SE precision increases the vector slot utilization,
and thus the speedup; the speedup is lowered when the preci-
sion requires additional vectors to represent its bits. Because
of the high utilization of vector slots, SC execution becomes
more feasible at higher precision.

4 Discussion and Conclusions
After exploring the capabilities of existing HE libraries and
evaluating the software performance tradeoffs between SE
and BE, we conclude that the strengths and weaknesses of
SCHE are very similar to (if not less favorable than) those
observed for SC in the hardware context.

First, since we are layering SE on top of HE computation,
performance tradeoffs of HEwould need to exhibit a different



Hsuan Hsiao†, Vincent Lee†, Brandon Reagen†‡, Armin Alaghi†

trend than those in CMOS hardware in order to observe
different results. Unfortunately our experiments show that
the performance cost of each gate in HE exhibits similar
trends as CMOS hardware. For instance, the performance
cost trend for amultiplier in SC compared to BE is the same in
CMOS hardware as in HE (i.e., increases exponentially with
precision). As a result, just changing the encoding from BE to
SC in HE does not yield a different speedup trend compared
to standard CMOS implementations. If future improvements
to the HE libraries create unequal costs depending on the
gate type and change this trend, there may be opportunities
to re-evaluate the merit of using SCHE.

Second, the fact that computation in HE executes on soft-
ware libraries as opposed to actual custom hardware that
can be spatially parallelized diminishes an important benefit
that SC brings. SC’s small arithmetic circuitry allows it to
have low area and power, which in turn translates to higher
feasibility to spatially parallelized computation. However,
this requires custom hardware implementations to realize
all of the benefits which is a non-trivial undertaking. As a
result, by restricting SC to run in software it loses some of
the area and power advantages over BE computations and
thus loses the spatial parallelism angle.
Third, a few implementation choices in current libraries

may limit the effectiveness of SC in HE. For example, in
Palisade’s implementation of TFHE, bootstrapping is per-
formed after each gate. While this allows for computation
with high logical depth, it is an unnecessary overhead if the
target computation is bounded by shallow logical depth. We
were not able to evaluate the potential of only performing
bootstrapping when necessary due to our lack of expertise in

the underlying mathematical formulation. An expert or com-
piler that is able to properly select which gates to bootstrap
would realize additional performance benefit. Additionally,
Palisade’s implementation does not have support for SIMD
execution of gates. Even though its integer HE constructions
(e.g., BFV and BGV) support packed encoding (i.e., multiple
integers are packed into a vector to allow computation on
an element-wise basis between ciphertext vectors), we were
unable to emulate Boolean logic with it due to restrictions
in setting its plaintext modulus to 2. Modulo 2 arithmetic
would enable an integer encoding of elementary logic gates.
A similar restriction exists in the Microsoft SEAL library [6]
where a plaintext modulus of 2 cannot be used with the
packed encoding. If these implementation restrictions are
addressed, it would enable other potential SCHE encodings,
which may be faster or more efficient.

References
[1] 2021. PALISADE Lattice Cryptography Library (release 1.11.5). https:

//palisade-crypto.org/.
[2] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. August 2016. TFHE: Fast Fully Homomorphic Encryption
Library. https://tfhe.github.io/tfhe/.

[3] B. R. Gaines. 1969. Stochastic Computing Systems. Springer US, Boston,
MA, 37–172. https://doi.org/10.1007/978-1-4899-5841-9_2

[4] Daniele Micciancio and Yuriy Polyakov. 2021. Bootstrapping in FHEW-
like Cryptosystems. Association for Computing Machinery, New York,
NY, USA, 17–28. https://doi.org/10.1145/3474366.3486924

[5] W. J. Poppelbaum, C. Afuso, and J. W. Esch. 1967. Stochastic Computing
Elements and Systems. In Proceedings of the November 14-16, 1967,
Fall Joint Computer Conference (Anaheim, California) (AFIPS ’67 (Fall)).
Association for Computing Machinery, New York, NY, USA, 635–644.
https://doi.org/10.1145/1465611.1465696

[6] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/
SEAL. Microsoft Research, Redmond, WA.

https://palisade-crypto.org/
https://palisade-crypto.org/
https://doi.org/10.1007/978-1-4899-5841-9_2
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/1465611.1465696
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	2 Methodology
	3 Evaluation
	4 Discussion and Conclusions
	References

